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FOREWORD 
The ACS S Y M P O S I U M SERIES was founded in 1974 to provide 
a medium for publishing symposia quickly in book form. The 
format of the SERIES parallels that of the continuing A D V A N C E S 

I N C H E M I S T R Y SERIES except that in order to save time the 
papers are not typeset but are reproduced as they are sub
mitted by the authors in camera-ready form. As a further 
means of saving time, the papers are not edited or reviewed 
except by the symposium chairman, who becomes editor of 
the book. Papers published in the ACS S Y M P O S I U M SERIES 

are original contributions not published elsewhere in whole or 
major part and include reports of research as well as reviews 
since symposia may embrace both types of presentation. 
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PREFACE 

s computing hardware and software continues to pervade the various 
areas of chemical research, education, and technology, various im

portant developments begin to emerge. For example, for areas in which 
large "number crunching" is required, larger and faster computing sys
tems have been developed that incorporate parallel processing, which 
have provided substantial increases in speed of problem solving compared 
with sequential processing. In other areas, such as data acquisition and 
equipment control, minicomputers and "midicomputers" have been de
signed and built to provide substantial improvements in both the quality 
of the data collected and the implementation of new experiments that 
could not be performed without the computer system assistance. Equally 
important developments in software have also evolved, from the imple
mentation of convenient timesharing systems for program development 
to the development of a variety of application program "packages" for 
use in various chemical research areas. 

While the limits achievable through better hardware design or more 
efficient programming of available algorithms are far from being reached, 
it is now becoming apparent that the algorithms themselves may present 
both substantial difficulties and opportunities for significant progress. In 
other words, it may no longer be a feasible strategy to assume that either 
a faster computer or a more efficiently programmed existing algorithm 
will be adequate in solving a given problem. 

To focus more clearly on this emerging area of importance, a sym
posium was organized as a part of the Fall American Chemical Society 
Meeting in San Francisco, on August 30, 1976. The goal was to bring 
together several experts in the development of algorithms for chemical 
research so that the state of the art might be assessed. These persons, 
whose papers are included in this volume, discussed not only the signifi
cant developments in algorithms that have already occurred, but also 
indicated places where currently available algorithms were not adequate. 

While it is not possible in a single symposium to discuss the entire 
spectrum of areas where significant algorithmic development has occurred 
or is needed, an attempt was made to include several of the important 
areas where progress is evident. In particular, the papers in this volume 
include discussions of the use of graph theory in algorithm design, algo
rithm design and choice in quantum chemistry, molecular scattering, 
solid state description and pattern recognition, and the handling of 

vii 
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chemical information. As both the authors and the topics indicate, the 
general topic is extremely diverse in scope, involving expertise from 
several disciplines in the search for new and improved algorithms. While 
this area is currently in its infancy, its potential impact is great, and it 
is hoped that these papers will serve both as a reference to the current 
state of the art and as an impetus to extend the study of algorithmic 
development to other areas as well. 

The University of Kansas 
Lawrence, Kansas 
December 1976 

RALPH E. CHRISTOFFERSEN 

viii 
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1 

Graph A l g o r i t h m s in C h e m i c a l C o m p u t a t i o n 

ROBERT ENDRE TARJAN* 

Computer Science Dept., Stanford University, Stanford, CA 94305 

1. Introduction. 

The use of computers in science is widespread. Without 
powerful number-crunching fac i l i t ies at his** disposal, the 
modern scientist would be greatly handicapped, unable to perform 
the thousands or millions of calculations required to analyze his 
data or explore the implications of his favorite theory. He (or 
his assistant) thus requires at least some familiarity with 
computers, the programming of computers, and the methods which 
might be used by computers to solve his problems. An entire 
branch of mathematics, numerical analysis, exists to analyze 
the behavior of numerical algorithms. 

However, the typical scientist's appreciation of the computer 
may be too narrow. Computers are much more than fast adders and 
multipliers; they are symbol manipulators of a very general kind. 
A scientist who writes programs in FORTRAN or some similar, 
scientif ically oriented computer language, may be unaware of the 
potential use of computers to solve computational, but not 
necessarily numeric, problems which might arise in his research. 

This paper discusses the use of computers to solve non-
numeric problems in chemistry. I shall focus on a particular 
problem, that of identifying chemical structure, and examine 
computer methods for solving it. The discussion wi l l include 

* This research was partially supported by the National Science 
Foundation, grant MCS75-22870, and by the Office of Naval 
Research, contract NOOO14-76-C-0688. 

** For the purpose of smooth reading, I have used the masculine 
gender throughout t h i s paper. 
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2 ALGORITHMS FOR CHEMICAL COMPUTATIONS 

elements of graph theory, l i s t processing, analysis of algorithms, 
and computational complexity. I -write as a computer sci e n t i s t , 
not as a chemist; I s h a l l neglect details of chemistry i n order to 
focus on issues of algorithmic a p p l i c a b i l i t y , simplicity, and 
speed. It i s my hope that some readers of t h i s paper w i l l become 
interested i n applying to t h e i r own problems i n chemistry the 
methods developed i n recent years by computer s c i e n t i s t s and 
mathematicians. 

The paper i s divided into several sections. Section 2 
discusses representation of chemical molecules as graphs. 
Section 3 covers complexity measures for computer algorithms. 
Section k surveys what i s loi own about the structure i d e n t i f i c a 
t i o n problem i n general. Section 5 solves the problem for mole
cules without rings. Section 6 gives a method for analyzing a 
molecule by systematically breaking i t into smaller parts. 
Section 7 discusses the case of "planar" molecules. Section 8 
outlines a complete method for structure i d e n t i f i c a t i o n , and 
mentions some further applications of the ideas contained herein 
to chemistry. 

2. Molecules and Their Representation. 

Consider a hypothetical chemical information system which 
performs the following tasks. I f a chemist asks the system about 
a certain molecule, the system w i l l respond with the information 
i t has concerning that molecule. I f the chemist asks for a 
l i s t i n g of a l l molecules which s a t i s f y certain properties (such 
as containing certain ra d i c a l s ) , the system w i l l respond with a l l 
such molecules known to i t . I f the chemist asks for a l i s t i n g of 
possible molecules (known or not), which s a t i s f y certain 
properties, the system w i l l provide a l i s t . 

Such an information system must be able to i d e n t i f y molecules 
on the basis of t h e i r structure. Given a molecule, the system 
must derive a unique code for the molecule, so that the code can 
be looked up i n a table and the properties of the molecule 
located. I t i s t h i s coding or cataloging problem which I want to 
consider here. A number of codes for molecules have been proposed 
and used; e.g. see (1,2,3,Ij-). The existence of many different 
codes with no single standard suggests the importance and the 
d i f f i c u l t y of the problem. I s h a l l attempt to explain why the 
problem i s d i f f i c u l t , and to suggest some computer approaches to 
i t . 

To deal with the problem i n a rigorous fashion, we couch i t 
within the branch of mathematics c a l l e d graph theory. A graph 
G = (V, E) i s a f i n i t e c o l l e c t i o n V of vertices and a f i n i t e 
c o l l e c t i o n Ε of edges. Each edge (v,w"5 consists of an 
unordered pair of d i s t i n c t vertices. Each edge and each vertex 
may i n addition have a l a b e l specifying certain information 
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1. T A R J A N Graph Algorithms 3 

about i t . We represent a chemical molecule as a graph by 
constructing one vertex for each atom and one edge for each 
chemical bond; a ball-and-stick model of a molecule i s r e a l l y a 
graph representation of i t . We l a b e l each vertex with the type of 
atom i t represents. See Figure 1 for an example. 

Two vertices ν and w of a graph are said to be adjacent 
i f (v,w) i s an edge of the graph. I f (v,w) i s an edge, and 
ν i s a vertex contained i n i t , the edge and vertex are said to 
be incident. Two graphs ^ = (V-L,E1) and G 2 = (V 2,E 2) are 
said to be isomorphic i f t h e i r vertices can be i d e n t i f i e d i n a 
one-to-one fashion so that, i f v^ and ŵ  are vertices i n G^ 
and v 2 and w2 are the corresponding vertices i n G 2 , then 
(v 1,w 1) i s an edge of G 1 i f and only i f (v 2,w 2) i s an edge 
of G 2 . Furthermore the pairs v 1 , v 2 ; w1 , w2 ; and 
(v^w^) , (v 2, w2) must have the same labels i f the graphs are 
la b e l l e d . 

The problem we s h a l l consider i s t h i s : given two graphs, 
determine i f they are isomorphic. Or: given a graph, construct 
a code for i t such that two graphs have the same code i f and only 
i f they are isomorphic. Notice that t h i s mathematical abstraction 
of chemical structure i d e n t i f i c a t i o n neglects some details of 
chemistry. For instance, we allow bonds between only two mole
cules, thereby precluding the representation of resonance struc
tures, and we ignore issues of stereochemistry ( i f two bonds of a 
carbon atom are fixed, our model allows free interchanging of the 
other two, whereas i n the r e a l world such interchanging may 
produce stereoisomers; see Figure 2 ) . However, these are 
differences of d e t a i l only, which can easily be incorporated into 
the model; we neglect them only for simplicity. Note also that 
our model does not allow loops (edges of the form (v,v) ), but 
i t does allow multiple edges (which may be used to represent 
multiple bonds, or for other purposes). 

A generalization of the isomorphism problem i s the subgraph 
isomorphism problem. Given two graphs G^ = (V^, E^) and 
G 2 = (VgjEJg) * we say G-j_ i s a subgraph of G 2 i f V-̂  i s a 
subset of V 2 and i s a subset of E 2 . The subgraph 
isomorphism problem i s that of determining i f a given graph G-̂  
i s isomorphic to a subgraph of another given graph G 2 . This i s 
one of the problems our hypothetical information system must solve 
to provide a l i s t of molecules containing certain radicals. We 
s h a l l deal with t h i s problem b r i e f l y ; i t seems to be much harder 
than the isomorphism problem. 

I f a computer i s to e f f i c i e n t l y encode molecules i t must 
f i r s t have a way to represent a molecule, or a graph. We consider 
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4 ALGORITHMS FOR CHEMICAL COMPUTATIONS 

Figure 1. Graphic representation of benzene 

Figure 2. Stereoisomers 
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1. T A R J A N Graph Algorithms 5 

two standard ways to represent graphs i n a computer. The f i r s t i s 
"by an adjacency matrix. If G = (V, E) i s a graph with η 
vertices numbered from 1 to η , an adjacency matrix for G i s 
the η by η matrix M = (m. .) with elements 0 and 1 , such 

^-3 
that m. . = 1 i f (v.,v.) i s an edge of G and m. . = 0 other-

^•3 ^- 3 ~^~3 
wise. See Figure 3(a), (b). Note that M i s symmetric and that 
i t s main diagonal i s zero. The matrix M i s not a code for G 
since i t i s not unique; i t depends upon the vertex numbering. 

An adjacency matrix representation of a graph has several 
nice properties. Many natural graph operations correspond to 
standard matrix operations (see (5) f o r some examples). The b i t s 
of M can be packed i n groups into computer words, so that 
storage of M requires only η /w words, i f w i s the word 

ο 
length of the machine (or only η /2w words, i f advantage i s 
taken of the symmetry of M ). I f M i s packed into words i n 
t h i s way, the b i t s can be processed w at a time, at least i n 
certain kinds of computations. 

However, the matrix representation has some serious disadvan
tages. An important property of graphs representing chemical 
molecules i s that they are sparse; most of the potential edges are 
missing. Since each atom has a fixed, small valence, the number of 
edges i n a graph representing a molecule i s no more than 
some fixed constant times η , the number of vertices. However, 
i n an arbitrary graph the number of edges can be as large as 

2 
(n -n)/2 (or larger, i f there are multiple edges). An adjacency 
matrix for a sparse graph contains mostly zeros, but there i s no 
good way of exploiting t h i s fact. It has been proved that testing 
many graph properties, including isomorphism, requires examining 
some fixed f r a c t i o n of the elements of the adjacency matrix i n the 
worst case ( 6 ) . Any algorithm which uses a matrix representation 

2 
of a graph thus runs i n time proportional to at least η i n the 
worst case. I f we wish to deal with large graphs and hope to get 
a running time close to l i n e a r i n the size of the graph, we must 
use a different representation. 

The one we choose i s an adjacency structure. An adjacency 
structure for a graph G = (V, E) i s a set of l i s t s , one for each 
vertex. The l i s t for vertex ν contains a l l vertices adjacent 
to ν . Note that a given edge (v,w) i s represented twice; 
w appears i n the adjacency l i s t f or ν and ν appears i n the 
adjacency l i s t for w . See Figure 3(c). 

An adjacency structure i s surprisingly easy to define and 
manipulate i n FORTRAN or any other standard programming language. 
We use three arrays, which we may c a l l adjacent to, vertex, and 
next. For any vertex ν , the element e^ = adjacent to (v) 
represents the f i r s t element on the adjacency l i s t f o r vertex v . 
The corresponding vertex i s vert ex (e-, ) , and the element 
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6 A L G O R I T H M S F O R C H E M I C A L C O M P U T A T I O N S 

1: 2, k, 6 

2: 1, 3 , 6 

3 : 2, k, 5 

^: 1, 3 , 5 

5 : 3 , 6 

6: 1, 2, 5 

(c) 

1 2 3 U 5 6 

adjacent to: 1 2 8 1 U 6 

1 2 3 k 5 6 7 8 9 10 11 12 13 Hi- 15 16 17 18 

vertex: 

next: 

2 1 1 6 1 3 2 6 2 3 5 3 5 1+ 6 5 

3 7 5 12 / 10 9 11 / 18 13 15 / 16 / 17 / / 
(d) 

Figure 3. Graphic representations: (a) graph, (b) adjacency matrix, (c) adja
cency structure, and (d) array representation of adjacency structure 
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1. T A R J A N Graph Algorithms 7 

= nextÇe^) represents the next element on the l i s t , A n u l l 

element i n d i c a t e s the end of the l i s t . See Figure 3(<3L)· The 
t o t a l amount of storage r e q u i r e d by these arrays i s n+^m , where 
η i s the number of v e r t i c e s i n the graph and m i s the number of 
edges; the t o t a l storage i s thus l i n e a r i n the s i z e of the graph. 
Searches and other n a t u r a l graph operations are easy t o implement 
u s i n g such a data s t r u c t u r e ; e .g . see (7, 8 ) . I f the graph i s 
l a b e l l e d we can use two e x t r a arrays which give vertex and edge 
l a b e l s . Athough the m a t r i x representat ion of a graph i s simple 
and mathematically elegant, the adjacency s t r u c t u r e representat ion 
seems t o be much more u s e f u l f o r computers. 

3 . Notions of Complexity. 

I f we are t o discuss computer methods, we need some way of 
measuring the performance of an a l g o r i t h m . We would l i k e our 
code f o r molecules t o be simple, n a t u r a l , and easy t o compute. 
Concepts l i k e "s imple" and " n a t u r a l " , although very important i n 
any r e a l - w o r l d cata loguing system, are d i f f i c u l t t o define and 
quant i fy . We s h a l l use a measure based on a machine's p o i n t of 
view, ra ther than on a human's. Though an a l g o r i t h m good by such 
a measure may be unwieldy f o r human use, at best a method u s e f u l 
f o r machines w i l l a l so be u s e f u l f o r people. At worst, such a 
measure provides a f i r m base f o r d i s c u s s i o n of the meri ts of 
var ious methods. 

One p o s s i b l e measure of a l g o r i t h m i c complexity i s program 
s i z e . Such a measure i s r e l a t e d t o the inherent s i m p l i c i t y or 
complexity of a method. This measure i s s t a t i c ; i t i s independent 
of the s i z e or s t ructure of the p a r t i c u l a r input data. Some other 
p o s s i b l e measures are dynamic; they measure the amount of a 
resource used by the method as a f u n c t i o n of the s i z e of the input 
data. T y p i c a l dynamic measures are running time and storage 
space. 

Program s i z e as a measure has the disadvantage that i n many 
cases the simplest a lgor i thm i s a brute force examination of a l l 
p o s s i b i l i t i e s ; the running time of such an a lgor i thm i s exponen
t i a l i n the s i z e of the input and thus only very smal l graphs can 
be analyzed. The algorithms we s h a l l consider a l l use storage 
space l i n e a r or quadratic i n the number of v e r t i c e s i n the input 
graph; thus storage space as a measure does not d i s c r i m i n a t e 
f i n e l y enough f o r our purposes. The running time of an a lgor i thm 
i s s t rongly r e l a t e d t o the a l g o r i t h m ' s usefulness i f i t i s run 
many t imes . We therefore choose running time as a f u n c t i o n of 
input s i z e as our measure of complexity. 

How s h a l l we measure running time? One p o s s i b i l i t y i s t o run 
the program severa l times on var ious sets of input data and 
extrapolate . This approach i s very dangerous. I f the number of 
examples t r i e d i s too s m a l l , the e x t r a p o l a t i o n i s probably 
meaningless. I f the number of examples t r i e d i s l a r g e and drawn 
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8 ALGORITHMS FOR CHEMICAL COMPUTATIONS 

from a suitably defined random population, the extrapolation may 
be s t a t i s t i c a l l y meaningful. However, defining a random graph 
i n a way which i s r e a l i s t i c f or chemistry i s a very t r i c k y 
problem. Furthermore any s t a t i s t i c a l method may miss rare but 
very bad cases; we would not l i k e our cataloguing system to spend 
hours on an occasional bizarre molecule. We are therefore only 
s a t i s f i e d with a careful theoretical analysis of an algorithm 
leading to a worst-case bound on i t s running time. 

To account for v a r i a b i l i t y i n machines, we ignore constant 
factors and pay attention only to the asymptotic growth rate of 
the running time as a function of the size of the problem graph. 
Our measure i s thus machine independent and most v a l i d for large 
graphs. I f machine-dependent constant factors and running time 
on small graphs are of interest, computer experiments or a more 
detailed analysis must be used. For convenience, we s h a l l use the 
notation " f(n) i s 0(g(n)) " to denote that the function f(n) 
s a t i s f i e s f(n) < cg(n) for some positive constant c and a l l 
η , where f and g are non-negative functions of η . 

k* Isomorphism and Subgraph Isomorphism. 

The isomorphism problem for general graphs i s not an easy 
one. Given two graphs G-̂  and G 2 of η vertices, the number 
of possible one-to-one mappings of vertices i s nl , and a brute 
force approach, which t r i e s a l l the p o s s i b i l i t i e s , i s too time-
consuming except for small graphs. A backtracking search (9); 
fares somewhat better. I n i t i a l l y , one vertex from each graph i s 
chosen, and these vertices are matched. In general, some vertex 
ŵ  adjacent to an already-matched vertex v^ i n G-̂  i s chosen 
and matched with some vertex ŵ  adjacent to the vertex v^ i n 
G 2 previously matched to v^ . Then w1 and w2 are compared 
to make sure t h e i r adjacencies with already-matched vertices are 
consistent. I f so, a new vertex for matching i s chosen. I f not, 
the l a s t matched pai r i s unmatched and a new matching t r i e d . 
The process continues u n t i l either al 1 vertices are matched or 
there i s found to be no way of matching the vertex sets of the 
two graphs. 

Backtrack search saves time over the brute force method by 
abandoning an attempt at matching as soon as i t i s known to f a i l . 
The running time of backtrack search depends i n a complicated way 
upon the structure of the graph; the best we can say i n general i s 
that i f d i s the maximum valence (number of vertices adjacent to 
a given vertex) i n either graph, the maximum running time of back
track search i s 0 ( ( d - l ) n ) — s t i l l exponential, but better than 
brute force. 

The most successful algorithms for general graph isomorphism 
use the backtrack approach (as a fall-back method) i n combination 
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1. T A R J A N Graph Algorithms 9 

•with a pa r t i t i o n i n g method (10,11,12,13). The idea i s to p a r t i t i o n 
the combined vertex sets of the two graphs so that any isomorphic 
mapping between the graphs preserves the p a r t i t i o n i n g . The method 
has four main steps. 
1. Choose an i n i t i a l p a r t i t i o n of the vertex sets. 
2. Refine the p a r t i t i o n . I f any subset of the p a r t i t i o n 

contains more vertices from one graph than from the other, 
go to step k. 

3· I f each subset of the p a r t i t i o n contains a single vertex 
from each graph, t r y the implied matching to see i f i t gives 
an isomorphism. I f i t does, halt with the isomorphism; i f 
not, go to step k* I f some subset contains two or more 
vertices from one graph, choose a vertex i n t h i s subset from 
each graph, match these vertices, and go to step 2 (the new 
matching allows further refinement of the p a r t i t i o n ) . 

i+. Backtrack, Back up to the p a r t i t i o n existing when the 
l a s t match was made. Try a new match and go to step 2. I f 
a l l matches have been t r i e d , back up to the previous match. 
I f a l l p o s s i b i l i t i e s for the very f i r s t match have been 
t r i e d , h a l t . The graphs are not isomorphic. 
For the i n i t i a l p a r t i t i o n we divide vertices up according to 

th e i r labels and t h e i r valences. Other more elaborate 
partitionings are possible; see (1^,15). 

We carry out the refinement, step i n the following way. For 
each vertex, we determine the number of adjacent vertices i n each 
subset of the p a r t i t i o n . This information i t s e l f p a r t i t i o n s the 
vertices. We take the intersection of t h i s p a r t i t i o n with the old 
p a r t i t i o n as our new p a r t i t i o n . We repeat t h i s r e f i n i n g step 
u n t i l no further refinement takes place. Implementation of the 
repeated refinement step i s somewhat t r i c k y ; Hopcroft ( l 6 ) has 
provided a good implementation. The effect of matching xwo 
vertices i n step 3 i s to place them by themselves i n a new subset 
of the p a r t i t i o n . Thus step 3 guarantees refinement of the 
pa r t i t i o n . See Figure h for an example of the application of the 
algorithm. 

The idea behind t h i s algorithm i s to use a l l possible l o c a l 
means of distinguishing between vertices before guessing a match. 
The method seems to work quite well i n practice. I t i s possible 
that some version of t h i s p a r t i t i o n i n g method has a time bound 
which i s a polynomial function of η . (To prove t h i s requires 
showing that the amount of backtracking i s polynomial i n η ; the 
refinement step requires only 0(m log m) time, where m i s the 
number of edges, i f Hopcroft f s implementation i s used.) However, 
the present theoretical bounds on the algorithm are no better than 
those for backtrack search. I t i s a major open question whether 
a polynomial-time algorithm exists for the general graph 
isomorphism problem. 

The situation for the subgraph isomorphism problem i s some
what better understood and somewhat more gloomy. It i s possible 
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10 ALGORITHMS FOR CHEMICAL COMPUTATIONS 

10 

(a) 

(b ) {l, 2,3Λ, 5,6,7,8,9,10,11,12} 
A: valence 3 

(c) {1,7} [2,3,h,5,6,8,9,10,11,12} 
Β C 

(d) {1,7} [2,k,6,8,10,12}(3,5,9,11} 
Β D: IB, 2C E: 3C 

(e) {1,7} {2,6} {^,8,10,12} {3,5} {9,11} 
B F: IB, ID, IE G: IB, 2E H: 2D, IE I: IB, 2D 

Figure 4. Isomorphism test by partitioning: (a) graphs, (b) initial partitionne) ini
tial match 1—7, (d) first refinement, and (e) further refinement (match fails since F 
contains no vertices of second graph). Complete test requires matching 1 succes

sively to 8,9,10,11,12, failing each time. 

Figure 5. A tree 
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1. T A R J A N Graph Algorithms 11 

to generalize the p a r t i t i o n i n g algorithm described above so that 
i t solves the subgraph isomorphism problem (17 )· However, the 
results of t h i s method i n practice seem to be mixed. Furthermore 
i t has been proved that the subgraph isomorphism problem belongs 
to a class of problems c a l l e d NP-complete. The NP-complete 
problems include a number of well-studied, apparently hard 
problems such as the t r a v e l l i n g salesman problem of operations 
research, the tautology problem of propositional calculus, and 
many other combinatorial problems. The NP-complete problems have 
the property that i f any one of them has a polynomial-time 
algorithm, they a l l do. Since no one has discovered a polynomial-
time algorithm for any of these problems, though many people have 
t r i e d , i t seems l i k e l y that none of these problems i s solvable i n 
polynomial time. It i s not known whether the graph isomorphism 
problem i t s e l f i s NP-complete. For a discussion of NP-complete 
problems, see (18,19,20). 

It would seem that our attempt to solve the graph isomorphism 
problem with a provably good algorithm i s doomed to f a i l u r e , and 
that we must be s a t i s f i e d with a h e u r i s t i c ; that i s , with a method 
which seems to work well i n many cases for reasons which we do not 
understand. However, by lowering our sigjits somewhat, we can go a 
long way toward a solution which i s both p r a c t i c a l and theoreti
c a l l y e f f i c i e n t . We s h a l l f i r s t consider the isomorphism problem 
for trees. For such graphs, there i s a good isomorphism 
algorithm. Next, we study a decomposition method for representing 
a graph as a c o l l e c t i o n of smaller graphs joined i n a t r e e - l i k e 
fashion. We then examine the important special case of planar 
graphs. F i n a l l y , we combine these ideas to produce an isomorphism 
algorithm which i s very fast on planar graphs and i s l i k e l y to 
work well on most, i f not a l l , chemical molecules. 

5 . Codes for Trees. 

Let G = (V, Ε) be a directed graph. A simple path from a 
vertex v^ to a vertex v f c i n G i s a sequence of d i s t i n c t 

edges (v-^Vg) y ( v 2 , v j ) > ··· > ^ v k - l , v k ^ * T h e l e n ^ t h o f t h e P a t h 

i s k-1 , the number of edges i t contains. A cycle i s a simple 
path from a vertex v 1 to i t s e l f . A graph i s connected i f every 
pa i r of vertices i s joined by a path. In the description of a 
backtrack search i n Section k we i m p l i c i t l y assumed that the 
graphs of interest were connected; we s h a l l continue to make th i s 
assumption. A tree i s a connected graph with no cycles (see 
Figure 5 for an example). 

In contrast to the isomorphism problem f o r general graphs, 
the isomorphism problem for trees i s r e l a t i v e l y easy. Any tree 
with η vertices has exactly n-1 edges. We s h a l l describe an 
algorithm for constructing, i n 0(n) time, a code for any tree, 
such that two trees are isomorphic i f and only i f they have 
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12 A L G O R I T H M S F O R C H E M I C A L C O M P U T A T I O N S 

i d e n t i c a l codes, variants of the algorithm have appeared i n many 
places (21,22,23,21+) and i t has i n fact been used i n chemical 
computation (25). 

To extract a unique code for a tree we must f i r s t put the 
tree into a canonical form. The f i r s t step i n doing t h i s i s to 
fi n d a uniquely determined vertex or edge i n the tree. A tree 
has at least two vertices of valence one. We c a l l such vertices 
leaves. For a given vertex ν , l e t the height h(v) of ν be 
the length of the longest path from ν to a le a f . A tree 
contains either a unique vertex of largest height, or two 
adjacent vertices of largest height (26), Since height must be 
preserved under isomorphism, t h i s unique vertex or pair of 
vertices can be used as a starting point for construction of the 
canonical tree. I f there are two vertices of largest height, we 
add a new vertex i n the middle of the edge joining them and l a b e l 
i t as a dummy vertex. Then we can assume our tree always has a 
unique vertex of largest height, which we c a l l the root. 

Each vertex ν except the root has a unique parent u which 
i s adjacent to ν and s a t i s f i e s h(u) > h(v)+l . ALL other 
vertices w adjacent to ν are c a l l e d i t s children and s a t i s f y 
h(w) < h ( v ) - l . We define ancestors and descendants i n the 
obvious way. Each vertex ν i n the tree defines a subtree 
consisting of ν and i t s descendants (see Figure 6 ) . 

We define a t o t a l ordering with vertex labels by the 
following rules. 
(1) I f Τ and U are two trees with different labels on th e i r 

roots, order the trees according to the labels of the roots. 
(2) I f Τ and U are two trees with the same l a b e l on t h e i r 

roots, l e t T^, Tg, ·.., T f c be the subtrees defined by the 
children of the root of Τ (in increasing order) and l e t 
U^,U^, •••>Û  ^e the subtrees defined by the children of the 
root of U . I f there i s some index j such that T^ i s 
isomorphic to U. for i < j and T. i s less than U. , 

J 3 3 
or i f i s isomorphic to IL for 1 < i < k and k < I , 
then Τ i s defined to be less than U . 
That i s , to compare two trees, we f i r s t compare t h e i r root 

labels. I f these are id e n t i c a l , we order the subtrees defined by 
the children of the roots, and compare the ordered sequences of 
subtrees lexicographically. 

Using t h i s ordering, we can construct a canonical representa
t i o n of a given tree by reordering the children of each vertex 
according to the order defined above. See Figure 6. From t h i s 
canonical representation, we can construct a li n e a r code which 
represents the tree uniquely. There are many possible ways to do 
t h i s ; one way i s defined by the following rules. 
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1. T A R J A N Graph Algorithms 13 

(1) The code code(T) for a tree Τ consisting of a single 
vertex i s i t s l a b e l . 

(2) I f Τ i s a tree of more than one vertex, and T ^ , • • · > \ 
are the subtrees defined by the children of the roots of Τ 
(in order), then the code for Τ i s 
code(T) = code(root)(code(l^)code(T^) ... code(T k)) . 
For instance, the code for the molecule i n Figure 6 i s 
C(C(C1HH)C(HHH)C(HHH)0(H)). 
This method gives a unique code f o r each tree; two trees are 

isomorphic i f and only i f they have the same code (we have 
neglected to include edge labels i n the code, but i t i s easy to do 
so i f necessary). The code i s quite natural, and i t i s easy to 
reconstruct a tree given i t s code. The reordering of subtrees i s 
what guarantees that each tree has only one code. One can vary 
the exact d e f i n i t i o n of the ordering; what i s important i s that 
the subtrees be ordered somehow. When th i s algorithm i s applied 
to chemical molecules, i t i s useful to use abbreviations i n the 
code, such as omitting e x p l i c i t reference to hydrogen atoms; e.g. 
see (27). 

Implementing the reordering algorithm i s somewhat 
complicated, since the sorting requires comparison of sequences 
element-by-element. See (28) for a good implementation. 
Constructing the code for a tree of η vertices requires 0(n) 
time with t h i s implementation. We can expect to f i n d no faster 
algorithm, since any method must inspect the entire tree. 

On trees, not only i s the isomorphism problem e f f i c i e n t l y 
solvable, but so i s the subgraph isomorphism problem. Edmonds 
and Matula (29) have discovered an algorithm which w i l l determine 
whether one tree i s isomorphic to a subtree of another i n 
0(n^/ 2) time, where η i s the number of vertices i n the larger 
tree. This bound can be improved substantially i f the valence 
of a l l vertices i s bounded by a small constant. The algorithm 
may be of p r a c t i c a l value, but t h i s has yet to be tested. 

6. Decomposition by Connectivity. 

Though the algorithm of Section 5 for encoding trees i s 
simple and fast, most chemical molecules are not trees. However, 
they are quite sparse and often t r e e - l i k e . Our approach i n t h i s 
section w i l l be to represent an a r b i t r a r y graph as a number of 
pieces linked i n t r e e - l i k e fashion. We can then encode the graph 
by encoding each piece separately, using these codes as labels on 
the linkage tree, and applying the tree encoding algorithm of 
Section 5 to encode the entire graph. In t h i s way we can make the 
most out of our tree encoding method; the non-tree-like parts of 
the graph w i l l usually be small. 

To decompose a graph, we determine i t s connectivity. Let 
G = (V, Ε) be a connected graph. A cut set of G i s a subset 
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14 ALGORITHMS FOR CHEMICAL COMPUTATIONS 

Figure 6. Tree of Figure 5 in canonical form. Dashes enclose subtrees of 
children of the root. 
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1. T A R J A N Graph Algorithms 15 

of vertices S such that there are at least two vertices ν 
and w (not i n S ) for which every path from ν to w passes 
through a vertex i n S . Removal of the vertices i n S thus 
breaks G into two or more connected pieces. I f we add the 
vertices i n G to each piece, the resultant subgraphs of G 
are c a l l e d the components of G with respect to the cutset S . 

We concentrate on cutsets containing no more than two 
vertices. By applying the following procedure, we break G into 
a number of smaller graphs. 

Decomposition algorithm. Begin with a single component 
consisting of the entire graph. Repeat the following step u n t i l 
i t no longer applies: 

Find a cutset of size one or two i n some component. I f i t i s 
a cutset of size one, subdivide the component into i t s components 
with respect to the cutset. I f i t i s a cutset of size two, say 
{v,w} , subdivide the component into i t s components with respect 
to the cutset, and add a new (dummy) edge (v,w) to each new 
component. 

The importance for isomorphism testing of t h i s algorithm i s 
three-fold: f i r s t , the components found by the algorithm are 
esse n t i a l l y unique (preserved under isomorphism). (To guarantee 
uniqueness we must s l i g h t l y modify the d e f i n i t i o n of components 
with respect to cutsets of size two; see (30,31,32). Second, the 
way the components f i t together can be represented by a decompo
s i t i o n tree (33). This tree contains one vertex f o r each 
component and one vertex for each cutset. A cutset i s adjacent 
to a component i n the tree i f the vertices of the cutset are i n 
the component. Figure 7 gives an example of a graph, i t s 
components, and i t s decomposition tree. 

Third, i t i s easy to f i n d the components and the decomposi
tion tree. An algorithm for t h i s purpose, which uses depth f i r s t 
search (a systematic method of exploring a graph) has been 
developed (3^,35,36). It runs i n 0(n+m) time on an η vertex, 
m edge graph. 

Each component with respect to the decomposition i s of one 
of three kinds — a bond (single edge or set of multiple edges), 
a cycle, or a graph with no multiple edges and no cutsets of 
size one or two, c a l l e d a triconnected graph. It i s easy to 
encode bonds and cycles; a l l that i s missing i s a method of 
encoding triconnected graphs. I f we can encode a l l the 
components, we can use the resultant codes as labels i n the 
decomposition tree and apply the Section 5 algorithm to encode 
the entire tree. The running time of t h i s algorithm w i l l be 
0(n+m) for everything except the encoding of the triconnected 
components. I f we use the p a r t i t i o n i n g method of Section k as a 
basis for encoding triconnected components, the complete algorithm 
w i l l probably do quite well i n practice. However, we have one 
more improvement to consider. 
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16 ALGORITHMS FOR CHEMICAL COMPUTATIONS 

7 · Planar Graphs. 

A Planar graph i s a graph which can be drawn on a piece of 
paper i n such a way that no edges cross. Most chemical molecules 
(with the possible exception of complex organic molecules) are 
planar (note that t h i s does not mean planar i n the sense of 
stereochemistry). For planar graphs the isomorphism problem also 
has an easy solution. 

When a graph i s drawn i n the plane, the drawing specifies a 
c i r c u l a r ordering of the edges around each vertex. A triconnected 
graph has the property that, i f i t i s planar, i t s planar represen
tation i s unique up to mirror image. Thus there are only two ways 
of drawing a triconnected planar graph i n the plane (two ways of 
specifying the c i r c u l a r ordering of edges around each vertex). 

We can use t h i s uniqueness to derive a code for any planar 
triconnected graph. F i r s t , we represent the graph i n the plane. 
This can be done i n 0(n) time (37). Next, we encode i t . One 
way to do t h i s was suggested by Weinberg (38)· We explore the 
graph i n the following way. We pick some starting edge and 
traverse i t from one end to the other. When reaching the other 
end, we choose the next edge clockwise around the vertex and 
traverse i t . We continue traversing edges i n t h i s way. Whenever 
we reach a vertex reached previously, we back up along the most 
recently traversed edge and pick the next edge clockwise. We 
continue the search u n t i l we have traversed each edge i n both 
directions and returned to our starting point. 

Such a search i s uniquely determined by the choice of the 
starting edge and the direction to traverse i t . We can construct a 
l i n e a r code during the search by writing a number (and a label) 
for each vertex reached, numbering the f i r s t vertex one, the next 
two, and so on. See Figure 8. To get a unique code, we construct 
a code for each possible edge and direction of traversal, for each 
of the two planar representations of the graph. Then we choose 
the lexicographically smallest of a l l the possible codes. A t r i 
connected planar graph of η > 3 vertices has at most 3*1-6 
edges (39)y so we generate at most 12n-2^ codes, each of length 

2 
η , and the t o t a l time to get a unique code i s 0(n ) . 

This encoding algorithm i s very easy to program, but i t i s 
possible to get a faster algorithm by using more sophisticated 
methods. Hopcroft's p a r t i t i o n i n g algorithm (ho) can be used to 
encode triconnected planar graphs i n 0(n log n) time (hi), 
Hopcroft and Wong (^2) have devised a very complicated algorithm 
which w i l l encode a triconnected planar graph i n 0(n) time. 
More recently, Fontet (^3) has devised a simpler 0(n) -time 
encoding algorithm. The p r a c t i c a l i t y of these algorithms has 
yet to be tested. 
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1. T A R J A N Graph Algorithms 17 

2[1] 

3[2] 

(a) 

(b) 1 2 3 ^ 1 ^ 5 6 1 6 2 6 5 3 5 ^3 2 1 

(c) 1 2 3 klk5 15 62 63 65 h3 2 1 

Figure 8. (a) Vlanar Graph, (b) Code ex
tracted by search starting with edge (1,2). 
(Vertices are numbered in search order.) (c) 
Code extracted by search starting with edge 
(2,3). (Numbers in brackets give the number
ing for this search.) Code (c) is chosen since 
it is smaller lexicographically. All other codes 

are identical to either (b) or (c). 

U R 1 
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8. Summary and Other Applications. 

We are now i n a position to outline a complete isomorphism 
algorithm. We test isomorphism of two graphs by encoding each 
graph and testing the codes for equality. To encode a graph, we 
decompose i t by finding a l l cutsets of size one and two, and 
forming the corresponding components and decomposition tree. We 
encode each bond component and each cycle component i n some 
obvious way. We encode each triconnected component as follows. 
We test the component for planarity. I f i t i s planar, we encode 
i t using one of the methods i n Section 7. I f i t i s not planar, 
we encode i t using the p a r t i t i o n i n g algorithm of Section k» We 
use the codes for components as labels i n the decomposition tree, 
and encode the tree (and thus the entire graph) using the method 
of Section 5 · 

The o v e r a l l result i s a method with a running time of 0(n+m) 
on η-vertex, m-edge graphs, plus whatever time i s required to 
encode non-planar triconnected components. Though t h i s algorithm 
has many parts, and programming i t i s quite a job, i t has the 
potential to be of p r a c t i c a l value. Though most of the parts of 
the algorithm have been programmed individually, the complete 
algorithm has not been programmed. Hopefully, t h i s situation w i l l 
be remedied i n the near future. 

Though the isomorphism problem i s a formidable one, we have 
examined some ideas and some methods which can go a long way 
toward solving i t . Many of the ideas we have considered have 
applications i n other areas of chemistry. For instance, we have 
discussed representing a sparse graph as an adjacency matrix with 
many zeros. We can turn t h i s idea around and use a graph to 
represent a sparse matrix (the matrix elements become labels for 
the corresponding graph edges). We can then apply graph-
theoretic techniques to matrix problems such as solving a system 
of l i n e a r equations and computing eigenvalues and 
A large l i t e r a t u r e has developed i n t h i s area; see (hk,k5,h6) for 
instance. 

Another application of graph theory to chemistry i s i n 
chromosome analysis. Suppose a chromosome i s broken into a 
number of pieces and each piece analyzed. I f t h i s i s done a 
number of times, the pieces found w i l l overlap i n various ways. 
The problem i s to use the overlap information to reconstruct the 
entire chromosome. For l i n e a r chromosomes, a linear-time 
algorithm has been developed to solve t h i s problem (V7,W3). For 
chromosomes which are rings, the problem seems surprisingly to 
be much harder and no good algorithm i s known (1+9)· 
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Algorithm Design in Computational Quantum 
Chemistry 

ERNEST R. DAVIDSON 
Chemistry Dept., University of Washington, Seattle, WA 98195 

Quantum chemistry is a diverse discipline which 
uses many different methods to correlate a wide variety 
of phenomena. In the earliest period of the subject 
the Schrödinger equation was solved exactly for a few 
simple model situations. These model solutions were 
then used to interpret the spectra, kinetics, and 
thermodynamics of molecules and solids. 

During this period, accurate solutions for the 
electronic structure of helium (1) and the hydrogen 
molecule (2) were obtained in order to verify that the 
Schrödinger equation was useful. Most of the effort, 
however, was devoted to developing a simple quantum 
model of electronic structure. Hartree (3) and others 
developed the self-consistent-field model for the 
structure of light atoms. For heavier atoms, the 
Thomas-Fermi model (4) based on total charge density 
rather than individual orbitals was used. 

Models for the electronic structure of polynuclear 
systems were also developed. Except for metals, where 
a free electron model of the valence electrons was used, 
all methods were based on a description of the elec
tronic structure in terms of atomic orbitals. Direct 
numerical solutions of the Hartree-Fock equations were 
not feasible and the Thomas-Fermi density model gave 
ridiculous results. Instead, two different models were 
introduced. The valence bond formulation (5) followed 
closely the concepts of chemical bonds between atoms 
which predated quantum theory (and even the discovery of 
the electron). In this formulation certain reasonable 
"configurations" were constructed by drawing bonds 
between unpaired electrons on different atoms. A math
ematical function formed from a sum of products of 
atomic orbitals was used to represent each configura
tion. The energy and electronic structure was then 

21 
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found by the li n e a r v a r i a t i o n method (also c a l l e d "reso
nance" or "configuration i n t e r a c t i o n " ) . Because of i t s 
almost one-to-one correspondance with e a r l i e r chemical 
concepts the valence bond model gained widespread accep
tance (6). The molecular o r b i t a l model (7) assumed, 
instead, that the electrons were i n certain molecular 
o r b i t a l s which could be expressed as l i n e a r combinations 
of atomic o r b i t a l s . Configurations were then con
structed as various ways of arranging electrons i n or
b i t a l s . The molecular o r b i t a l model gave a clear i n t e r 
pretation of molecular spectra but was less transparent 
than the valence bond method i n modeling geometrical 
structure of molecules (6,8). In almost a l l early ap
p l i c a t i o n s of valence bond (9) and molecular o r b i t a l 
(10) models the integrals encountered were too d i f f i c u l t 
to actually evaluate so empirical values of the i n t e 
grals were assumed which reproduced the phenomena being 
studied. 

With the advent of the stored-program d i g i t a l com
puter a minor revolution occurred i n quantum chemistry. 
The integrals appearing i n the models being used for 
small molecules were actually evaluated and i t became 
clear that molecules were enormously more complicated 
than had been anticipated. The oversimplified valence 
bond and molecular o r b i t a l methods often gave q u a l i t a 
t i v e l y r i d i c u l o u s r e s u l t s when taken l i t e r a l l y (11). 

As a consequence of these negative r e s u l t s , the 
f i e l d of ab i n i t i o quantum chemistry developed with the 
goal of finding computer algorithms for solving the 
Schrôdinger equation. The prospect of obtaining r e l i 
able r e s u l t s for molecular systems not susceptible to 
direct measurement (repulsive potential energy surfaces, 
upper atmosphere free r a d i c a l s , etc.) and c l a r i f y i n g 
the interpretation of experimental r e s u l t s which do not 
follow simple models attracted interest i n t h i s f i e l d 
i n spite of the extraordinary expense of the approach 
and the lack of chemical insight i n the early r e s u l t s . 

In the ab i n i t i o approach the desired answers are 
the experimental observables - spectral l i n e positions, 
shapes, i n t e n s i t i e s ; scattering and reaction rates; 
p o l a r i z a b i l i t i e s and o p t i c a l rotary power; etc. These 
are to be obtained from the Schrôdinger equation by 
numerical methods which are mathematically well-defined 
and involve no intermediate parameters not appearing i n 
the Schrôdinger equation i t s e l f . 

Usually the Born-Oppenheimer separation of nuclear 
and electronic coordinates i s assumed and small terms i n 
the hamiltonian, such as spin-orbit coupling, are 
neglected i n the f i r s t approximation. Perturbation 
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2. D A V I D S O N Computational Quantum Chemistry 23 

theory may be used to correct for these approximations 
by coupling electronic states i n the next l e v e l of 
approximation. Figure 1 outlines the relationship 
between various steps i n the cal c u l a t i o n of some experi
mental observables. Central to a l l other steps i s the 
calc u l a t i o n of the adiabatic electronic wavefunctions 
for a l l states of interes t . From the wavefunctions one 
can obtain f i r s t order properties and coupling matrix 
elements for estimating corrections due to coupling of 
states by non-adiabatic or spin-orbit e f f e c t s . Methods 
which by-pass the wavefunction such as Χα or density 
functional models (12) are not yet s u f f i c i e n t l y general 
to treat t h i s wide class of chemical problems. 

Each box i n Figure 1 represents i t s own peculiar 
computing problems. The algorithms for various steps 
are at various levels of sophistication depending on 
the r e l a t i v e cost, d i f f i c u l t y , and interest i n the 
re s u l t s . The i n i t i a l c a l c u l a t i o n of electronic wave-
functions and energy surfaces have preoccupied quantum 
chemists for t h i r t y years. The cal c u l a t i o n of adiabatic 
scattering and reaction rates has received much atten
tion i n recent years (JJ3). The accurate c a l c u l a t i o n of 
vi b r a t i o n a l - r o t a t i o n a l l e v e l s i s nearly as d i f f i c u l t 
but has received l i t t l e attention u n t i l very recently. 
Equally accurate formalisms i n the coupled state model 
do not exist because no general algorithmetric formalism 
e x i s t s for handling the electronic part of the problem. 
No v i b r a t i o n a l - r o t a t i o n a l spectrum has yet been computed 
from an ab i n i t i o approach taking f u l l account of Born-
Oppenheimer coupling i n a Jahn-Teller-Renner s i t u a t i o n . 
Generally speaking the whole area of coupled electronic 
state calculations lacks a workable algorithm. F i r s t 
order perturbation theory, while suggestive, i s often 
not a quantitative t o o l . 

The rest of t h i s paper w i l l deal exclusively with 
algorithms for construction of electronic wavefunctions 
because these are central to the o v e r a l l problem. In 
order to appreciate the methods used, one must r e c a l l 
that we are interested i n solving a p a r t i a l d i f f e r e n t i a l 
equation eigenvalue problem for several wavefunctions at 
several d i f f e r e n t arrangements of the nuclei. This 
d i f f e r e n t i a l equation involves one- and two-body opera
tors i n the pot e n t i a l energy operator and p a r t i a l d e r i 
vatives with respect to 3N coordinates (where Ν i s the 
number of electrons). 

For benzene, for example, there are 12 nuclei and 
42 electrons. The reasonable aspiration of finding the 
equilibrium geometry and force constants for the f i r s t 
10 states would involve solving a p a r t i a l d i f f e r e n t i a l 
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C O U P L E D S T A T E 
R E A C T I O N R A T E 

N U C L E A R - E L E C T R O N I C 
C O U P L E D M O T I O N 

P E R T U R B E D V I B R A T I O N A L -
R O T A T I O N A L L E V E L S , J A H N -
T E L L E R - R E N N E R E F F E C T S 

N A T U R A L 
O R B I T A L S 

C H E M I C A L 
I N T E R - •* 
P R E T A T I O N 

G E T A P P R O X I M A T E 
P O T E N T I A L S U R F A C E S 

A N D E L E C T R O N I C 
W A V E F U N C T I O N S F O R 

S T A T E S A N D G E O M E T R I E S 
O F I N T E R E S T U S I N G 
B O R N - O P P E N H E I M E R 

A P P R O X I M A T I O N A N D O N L Y 
C O U L O M B I N T E R A C T I O N S ι — 
D E N S I T Y 
M A T R I C E S 

F I R S T O R D E R 
C O R R E C T I O N S 
T O E N E R G Y 

D I S T R I B U T I O N 
O F S P I N , 
C H A R G E A N D 
MOMENTUM 

N U C L E A R 
M O T I O N 

C O R R E C T W A V E F U N C T I O N S 
F O R P E R T U R B A T I O N S 

( S P I N - O R B I T , E X T E R N A L F I E L D , 
R E L A T I V I S T I C , E T C . ) 

W I T H I N B O R N - O P P E N H E I M E R 
A P P R O X I M A T I O N 

P O L A R I Z A B I L I T Y 

"U" 
A D I A B A T I C 
R E A C T I O N 
R A T E S 

E L E C T R O N I C 
T R A N S I T I O N 

R A T E S 
A N D L I F E T I M E S 

V I B R A T I O N A L 
A V E R A G E D 
P R O P E R T I E S 

Figure 1. Flow chart jot ab initio calculions 
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equation of t h i s type i n 126 independent variables. 
The only reason i t i s possible here i s that (1) the 
fix e d f i e l d due to the nuclei dominates over the 
electron-electron repulsion so the electronic motions 
are usually not strongly coupled to each other, 
(2) i t i s impossible for a large c o l l e c t i o n of mutually-
repulsive p a r t i c l e s to avoid each other i f they are 
constrained to remain i n the same region of space, and 
(3) electrons are indistinguishable so the coordinates 
are permutational equivalent. Hence the antisymmetric 
independent p a r t i c l e approximation which leads to a 
pseudo-separation of variables i s often a good f i r s t 
approximat ion. 

Now consider the resources available for solving 
t h i s (or a sim i l a r ) problem i f some government agency 
decides these r e s u l t s are v i t a l to the national welfare. 
It would then be possible to spend up to 10 4 hours of 
CDC7600 time on t h i s problem (about $10,000,000). This 
w i l l allow about 1 0 1 4 arithmetic operations (addition 
o r ^ m u l t i p l i c a t i o n ) . Also we can assume^that at most 
10 words of high speed core memory, 10 words of low^ 
speed core, 10 8 words of disk or drum storage, and 10 
words of sequential tape storage are available. By 
present standards t h i s would be a very large c a l c u l a ^ 
t i o n since every member given here i s a factor of 10 
larger than what i s t y p i c a l l y used. 

If one wavefunction at one set of nuclear coordi
nates were sought by numerical integration using only 
two points i n each coordinate, a gri d of 2 1 2 6 ̂  1 0 3 8 

points would be required. If spin and antisymmetry are 
taken into account the s i t u a t i o n i s even worse. Since 
no two electrons can be at the same point with the same 
spin at least Ν positions must be considered for each 
electron and the minimum gr i d contains 42! = 1 0 5 1 points 
in 3N space. 

The only method found so far which i s f l e x i b l e 
enough to y i e l d ground and excited state wavefunctions, 
t r a n s i t i o n rates and other properties i s based on ex
panding a l l wavefunctions and operators i n a f i n i t e 
discrete set of basis functions. That i s , a set of one-
p a r t i c l e s p i n - o r b i t a l s {φ.}ξ = 1 are selected and the 
wavefunction i s expanded i n Slater determinants based 
on these o r b i t a l s . A direct expansion would require 
w r i t i n g Ψ as 

ψ = ι οτΦτ 

Φ τ = det(<f) , φ ,...φ. ) l < i <9<... <. <D 
1 Xl X2 XN 1 Z XN 
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Since the number of possible Slater determinants i s (JST), 
t h i s again gives an exponential dependence on N. For 
example, the simplest chemically reasonable o r b i t a l 2χ basis set for benzene has 72 spin o r b i t a l s and (4g)~10 . 
Clearly t h i s expansion method i s feasible only i f very 
few of the Slater determinants actually contribute to 
each of the f i r s t few wavefunctions. Hence a method i s 
required for constructing the o r b i t a l s so that i t i s 
known i n advance that r e l a t i v e l y few of the Φ Ι w i l l be 
important. 

The standard method for selecting the <l>j i s to ask 
for the φ^ which maximize the importance of one or more 
terms i n the sum. This gives the s e l f - c o n s i s t e n t - f i e l d 
(SCF) or multiconfiguration SCF (MC-SCF) equations. If 
each φ^ i s expanded as a l i n e a r combination of some 
fixed set of basis functions { f i } i = i t n e c o e f f i c i e n t s 
can be found by an extension of the Roothaan SCF 
equations. 

Figure 2 gives an outline of the steps i n t h i s 
approach along with the cost ( i n machine operations) of 
each step. For benzene t h i s s t i l l requires about 10 s 

operations to form a l l the integrals required to re
present the energy operators, i n the simplest reasonable 
basis set (d=36), 10' operations to f i n d one SCF wave-
function, 10 s operations to form the integrals over 
molecular o r b i t a l s and about 10 8 operations to obtain 
a good expansion for the wavefunction. If 10 wavefunc-
tions were wanted at 10 3 nuclear arrangements the t o t a l 
cost would approach 1 0 1 3 operations. Further, i f a 
good basis set were used including Rydberg o r b i t a l s 
which are known to be important for some of the lowest 
excited states the number of basis functions could 
e a s i l y be quadrupled and the number of arithmetic 
operations would be very nearly 10 1 5. In t h i s example 
the storage available would present no problem although 
a l l of the integrals would not f i t into high speed core 
at one time. 

In the following sections of t h i s paper some of 
the algorithms involved i n the various steps shown i n 
Figure 2 are presented i n d e t a i l . Emphasis i s placed 
on concepts which might be useful outside of quantum 
chemistry. From the previous discussion i t should be 
clear, however, that ab i n i t i o calculations are 
inherently expensive. Since few research projects can 
afford to use more than 10^- arithmetic operations or 

words of memory (of a l l sorts) only r e l a t i v e l y small 
molecules can be treated i n d e t a i l . For medium size 
molecules one must be content with SCF calculations at 
only a few nuclear arrangements. For very large mole-
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A R I T H M E T I C 
O P E R A T I O N S 

S E L E C T 
B A S I S 

S E T if.yl, 

FORM I N T E G R A L S 
< f i N V 4 5,2 1 J lOOd* to 5x1 O V 

FORM S C F O R B I T A L S 20c,4 t Q m d 3 
φ. = za..f. 

FORM I N T E G R A L S 
<Φ,·ΙΜΦ1

>
 5 , 20, 

1 J d D (or IT<r) 

S E L E C T C O N F I G U R A T I O N S 
by perturbation theory or 100N 2 ( d - - ) 2 

other rules v ~V 
keep Κ configurations 

FORM C I M A T R I X ,- N „2 / M2 
FORMULA 2 5 0 K / N 

E L E M E N T 25 K 2 / N 2 

FIND EIGENVECTOR ~ JZ,H2 
AND ENERGY ' 

FORM DENSITY 1 0 0 r K 2 / N 2 ( d - ^ l or 50d 3 

& MOLEC PROP. 1 0 0 L K / N ( U ZU °Γ 

Figure 2. Unit operations in calcuhting a wavefunction 
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cules (more than 500 valence electrons) i n the absence 
of symmetry, even the crudest ca l c u l a t i o n becomes 
excessively expensive. 
Integral Calculation 

The integrals involved i n t y p i c a l quantum chemical 
calculations are of the form (17,18) 

B i j = /fi<£> B fj(£> d T 

and 
Qijk* • /<(£i)fj(i:i)û(z12)fk(i:2)f,(i:2)dT1dT2 

where Β i s V 2, V, r, r : r , r " 1 , Y l m / r 2 , Y
2 m/ r 3> e t c -

and α i s r~*, Y i m ^ i 2 ) / r i 2 > e t c -
The basis functions f. must therefore be chosen as a 
compromise between the best representation of the wave-
function (which requires the fewest f. and hence fewest 
integrals) and the easiest functions to integrate. For 
atoms, Slater o r b i t a l s , r Υ. (Ω), and numerical o r b i 
t a l s , R(r)YΛιη(Ω) with R giver? numerically, are s u f f i 
c i e n t l y accurate and simple. For diatomics, Slater 
o r b i t a l s have remained the best choice because the i n 
tegrals can be done with reasonable e f f o r t . Poly
atomic calculations, however, were blocked for many 
years because of the d i f f i c u l t y of evaluating electron 
repulsion (r-[jj>) integrals with Slater o r b i t a l s . I t has 
been known for some time that gaussian o r b i t a l s , x n y ^ z m 

exp(-ar^), have certain peculiar properties which make 
the integrals r e l a t i v e l y easy to obtain (14). On the 
other hand t h i s functional form i s not much l i k e the 
wavefunction of a coulomb po t e n t i a l so more functions 
are required. 

In recent years a compromise has been found which 
presently dominates polyatomic calculations. Each 
function f-̂  i s expanded as a l i n e a r combination of 
gaussian o r b i t a l s (f i s then c a l l e d a contracted gaus
sian function). Since t h i s i s b a s i c a l l y a numerical 
f i t t i n g procedure, various choices have been suggested 
for the contraction scheme. The most popular choices 
are presently Pople's approximations (15) to Slater 
o r b i t a l s and Dunning*s approximations (16) to free atom 
Hartree-Fock o r b i t a l s . 

Because they are the most d i f f i c u l t and most numer
ous of the integrals routinely needed, l e t us consider 
the electron repulsion integrals 
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2. D A V I D S O N Computational Quantum Chemistry 29 

[ij||k£] = /g*(£1)gj(£1) ri2 gk (-2 ) g£ (~2 ) d xl d' r2 
in more d e t a i l for the case that a l l of the are 
simple normalized gaussian "lobes" 

g ] L ( r ) = N.f.Cr) 

f. = exp(-aJr-R,.| 2) 

Ν. = (2α./π) 3 / 4 

centered at positions R̂  respectively. This i s a "four-
center" i n t e g r a l i f a l l the positions are dif f e r e n t and 
i s extremely d i f f i c u l t to evaluate using any other type 
of basis functions. For gaussians, however 

*i<£l>*J<£l> • K i j f p ^ l > 
where 

and 

R p = (a.R. + a.R.)/(a i + a.) 

a p = a. + a. 

f = exp(-a |r-R I 2) ρ ρ' ρ' ' 
K i j - N ^ e x p i - a . j l R . - R . I ) 2 

a i j = a i a j / < a i + a j > 
so the i n t e g r a l reduces e a s i l y to a two center i n t e g r a l 

C i J l l k A ] - K ^ K ^ / f p C r ^ r - ^ C r ^ d T ^ T ^ 

This may be further s i m p l i f i e d by the change of 
variables 

r = i C ^ + I g ) , r 1 2 = r 1 - r 2 to obtain 

V*L>V£2> = V*>ft<*12> 
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where 

and 

a s = V a q 
R s * C « p ( t e l 2 - ^ , > + V - f e l 2 - R q ) ] / a i 

a t " a p a q / ( W 

R. = R —R t -p -q 
Hence 

[ij||k£] - K . . K k J d T 1 2 f t ( r 1 2 ) r - l / d T f 8 < r ) 

The r integration can now be done to give 

Jdx f g ( r ) = ( π / α 8 ) 3 / 2 

Since t h i s i s independent of R (and hence of r 1 9 ) , one 
i s l e f t with s L 

[ij||k£] = K . . K k J l ( T r / a s ) 3 / 2 / d T 1 2 f t ( r 1 2 ) r ^ . 

The angular integration i n t h i s f i n a l three dimensional 
i n t e g r a l i s e a s i l y done i f a spherical coordinate system 
i s introduced with the ζ axis chosen along R̂ : 

/ d T 1 2 f t ( r 1 2 > r Î 2 = /°°cir12r / 7 r s i n e d 6 / 2 ^ e x p ( - a t r 2 2 ) 
Ο ο ο 

2 

χ expi-a^R^)exp ( - 2 a tr 1 2R tcos9) 

= 33-Γ<1τ 1 2[θχρ(-α | r 1 2 - R I 2 ) 
t t Ο 

2 

-exp(-a t|r 1 2+R t| )] 
= 2 π α " 3 / 2 Η : 1 / Ε ΐ : α dr ex p ( - r 2 ) . 

τ τ ο 
The remaining i n t e g r a l i s closely related to the error 
function 
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e r f ( t ) = 2TT */ tdr exp(-r 2) 

Because t h i s expression for [ i j | | k A ] reduces to 0/0 for 
R t = 0, i t i s customary to define a related auxilary 
function 

F (T) = T~*/£*dr exp(-r 2) 
so 5 ^ 2 

[ i j l l k t ] = - ^ ^ ν ο ( Τ ) 
a t a s 

if 
Τ = atR2

t. 

I f the overlap charge sij • /«ι<£ι>«̂ ι>*τι 
- ( i r/V 3 / 2 Kij 

i s introduced, 

C i J l l k A ] = S . j S k A a * 2π-*Ρο(Τ) 

For large Τ, erf(/T)+l and the formula for 
[ij||k£] reduces to that for two charges of magnitude 
S j i and Sfc£ inte r a c t i n g at a distance R̂ . For small T, 
F 0(T)+1 and [ij||k£] corresponds to the overlap charges 
interacting at an average distance of (π/4α,)2. For a l l 
T, F Q(T) < 1 so τ 

[ i j | |k£3/S i JS k J l < 2τΓ*α*. 

Since < 1 and a t < a , 

0 < [ i j I |k£] < 2π"*α *S. 

Contracted gaussian lobes ( i . e . combinations of 
only simple gaussians) are frequently used as basis 
functions (21). For large molecules the lobes may be 
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centered i n widely scattered parts of the molecule so 
that most of the S i j overlap charges are quite small 
(< 1CT 1 3). The energy and wavefunction seem to depend 
only on f i x e d point accuracy in the integrals [ i . e . , 
±10-6 absolute (not r e l a t i v e ) error i n each i n t e g r a l 
gives about ±10~6 absolute error i n energy]. Hence 
most integrals do not need to be evaluated for large 
molecules. Further, many of the integrals can be 
eliminated by a test based only on one charge d i s t r i b u 
t i o n . Thus, although ^ d 4 integrals need to be done 
for small molecules, only ^ d 2 integrals are needed for 
large molecules. 

Those integrals which remain to be done can be 
written so they involve one exponential, one square 
root, and either F Q(T) or erf(/T). Each of these three 
functions involve about the same amount of time althougl 
the square root can be made 30% faster than the stan
dard square root routine furnished with the computer 
software package. Since b i l l i o n s of these basic 
[ij||k£] integrals must be evaluated i n a t y p i c a l large 
c a l c u l a t i o n , i t i s essential that the fastest possible 
algorithm be used. In t h i s regard i t i s best to evalu
ate F Q(T) for small Τ and erf(/T) for large T. By 
judicious choice of i n t e r v a l s a short Chebyshev series 
for F 0(T) or erf(/T) can be found on each i n t e r v a l (19, 
20). Although t h i s involves storing about 4000 c o e f f i 
cients and pointers, the r e s u l t i n g algorithm i s nearly 
twice as fast as one based on larger i n t e r v a l s and 
longer series or on a Taylor series for short i n t e r v a l s . 
This d i v i s i o n into i n t e r v a l s i s s i m p l i f i e d by the fact 
that only 0 < Τ < 30 need be considered since erf(/30) 
i s one to twelve s i g n i f i c a n t figures. 

This analysis i s t y p i c a l of the approach to elec
tron repulsion in t e g r a l s . Use of cartesian gaussian 
functions gives r i s e to a more general basic i n t e g r a l 
(17) 

F (T) = J 1 e - T u 2 u 2 n du 
ο 

S i m i l a r l y , Slater o r b i t a l s for diatomic molecules give 
integrals of the form (22) 

Αηα< α> = Γ e ~ a U u n ( u 2 - ! ) * du 
and (23) 

" W " - l\ . - " V P V u ) < l - u 2 > " " 2 + ' d u 
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Rather elaborate recursion re l a t i o n s can be found for 
a l l these integrals when care i s taken to preserve 
numerical accuracy. Since usually a l l values of η are 
needed anyway, the intermediate values of η as well as 
the largest value n=N and the smallest n=0 are useful. 
For example, the recursion r e l a t i o n 

(2n+l)F n(T) = 2T F Q + 1 ( T ) + e" T 

i s stable for recurring downward on η but i s unstable 
for recurring upwards (for small T/n) because 
(2n+l)F (T) * e-T. 

Consequently, evaluation of F n(T) involves d i f f e r e n t 
schemes depending on the value of Ν and T. For Τ > N, 
upward recurrence from F Q i s possible without loss of 
si g n i f i c a n t figures. For Τ < N, downward recurrence 
must be used s t a r t i n g from F N(T). For most functions 
t h i s s i t u a t i o n would require either a set of tables for 
every possible s t a r t i n g value of Ν or else one table 
for an N* greater than any Ν which can occur followed 
by downward recurrence from N*. The p a r t i c u l a r function 
F dealt with here, however, obeys the relationship 

é Fn<T> = "WT> 
so the Taylor series has the simple form 

VT> = j 0W To> <vT>k/k! 

The convergence rate of t h i s series i s nearly indepen
dent of η ( F n + k + i / F n + k « 1 for small T) so a table of F n ( T Q ) at a sequence of i n t e r v a l s of T Q for η from zero 
N*+K (an i n t e r v a l width of 0.1 requires a Κ of 6 for 
twelve s i g n i f i c a n t figures) s u f f i c e s for a l l values of 
Ν and T. As for F Q, at large Τ i t i s better to evaluate 
a generalized error function 

G n(/T) = e" u 2u 2 ndu 
Ο 

G n + 1 ( / Î ) = (*+4)Gn(/T) - T N + V T 

Hence an e f f i c i e n t algorithm must recognize several 
ranges of T: 
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Τ = 0 
0<T<N 

N<T<T* 

max (N,T*)<t<T** 

T**<T<T*** 
T;***<T 

F n = (2n+l) -1 

F N by Taylor series, 
recur down 

F by Chebyshev series, 
° recur up 
G by Chebyshev series, 
° recur up 
G =1, recur up ο ' 
Go • 1 > G n + 1 - ( n + 4 ) G n 

where T**7, T***30, T***~30+3N i f 13 figure accuracy i s 
wanted. 
Self-Consistent-Field 

The simplest approximate wavefunction for an open-
s h e l l molecule i s the spin-unrestricted Hartree-Fock 
function 

ψ = (Ν!)"* άβΐ{φ1Φ2...φΐ£ΦΐΕ+1...φΝ} 

where Ν i s the number of electrons and 
d 

ι j = 1 J i J 

are orthonormal s p i n - o r b i t a l s . The expectation value of 
the energy, <ψ|Η|ψ>, i s a quartic polynomial E(c) i n the 
Nd variables c. The orthonormality constraints form a 
set of subsidiary quadratic constraints of the form 

G i(c) =0 i = I-·-L 
The s e l f - c o n s i s t e n t - f i e l d algorithm i s an i t e r a t i v e 
method for finding the c o e f f i c i e n t s c which minimize 
E(c) subject to these constraints. 
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2. D A V I D S O N Computational Quantum Chemistry 35 

This algorithm may be derived from the Euler-
Lagrange equations 

3 E / 8 C . . = I X k 9 G k / 3 C j i 

which are cubic i n c. The wavefunction ψ i s unchanged 
by a unitary transformation among the spin-up or spin-
down o r b i t a l s . Roothann (24) has shown how t h i s a r b i 
trariness may be used to change the Euler-Langrange 
equations to the pseudo-eigenvalue form 

Z(Ç)çk = £ kSç k 

where F i s a quadratic polynomial i n the c c o e f f i c i e n t s 
(which i s s t i l l somewhat a r b i t r a r y ) . Since t h i s cubic 
equation cannot be solved e x p l i c i t l y , one can attempt 
an i t e r a t i v e solution i n the form 

Z ( Ç ( n " 1 > ) Ç k
< n ) = e kS£ k

( n )-

Although t h i s equation i s usually stated as the 
basis of the i t e r a t i v e algorithm, i t often does not lead 
to rapid convergence ( 2j5). Consequently the F matrix 
i s usually modified i n four d i f f e r e n t ways. 

(1) the ar b i t r a r i n e s s (26) i n the d e f i n i t i o n of F 
i s used to ensure that the correction 6c to c agrees 
with the Newton-Raphson solution of the Euler-Lagrange 
equations to f i r s t order i n 6c. 

(2) the elements of F are extrapolated (27) from 
F ( c A n " 3 ) ) , F ( e ( n - 2 ) ) ? a n d F(ç(n-1)) assuming each ele
ment converges geometrically to give F ( N - 1 ) . 

(3) o s c i l l a t i o n s are damped by averaging (27), 
with appropriate weights F ( n _ 2 ) and F(c( n--0 ) to give 
FC 1 1 - 1 ). 

(4} o s c i l l a t i o n s are damped by adding (26) to 
Ff c ( n - l ) ) a r o o t - s h i f t I a i C j ( n - 1 ) c j V n - l ) T t o obtain 
F C n - l ) . The l a s t three o i these modifications have the 
property that F ( N ) converges to F(c) as c ( n ) converges 
to c; so at convergence the cubic equation i s solved. 

These methods for c o n t r o l l i n g convergence of an 
i t e r a t i v e solution to a complicated set of equations 
have wide a p p l i c a b i l i t y . The extrapolation and damping 
methods are based on well-known ideas for single 
variables while r o o t - s h i f t i n g may be a novel development 
by quantum chemists. 

Spin-restricted and multi-configuration s e l f -
c o n s i s t e n t - f i e l d methods d i f f e r i n the assumed func-
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t i o n a l form for ψ. The basic method for solving the 
res u l t i n g cubic Euler-Lagrange equations remains simi
l a r to that just discussed. 
Configuration Interaction 

Configuration interaction has come to mean any 
expansion of the wavefunction i n a f i n i t e series of N-
electron functions (28) 

Ψ = ^Φ^Ι,.,.,Ν) 

where the Ĉ  s a t i s f y the matrix eigenvalue equations 

HC = E S C 
H I J - < Φ ΐ Ι Η Ι ν 
S u - < φ ι ' ν 

Most CI calculations involve configurations formed 
from a common set of orthonormal o r b i t a l s by spin and 
symmetry adaptation of Slater determinants. In t h i s 
case S i s a unit matrix and the formation of H i s 
greatly s i m p l i f i e d . 

In most CI calculations the H J J are f i r s t expressed 
in terms of basic integrals I, over orthonormal molecu
l a r o r b i t a l s as 

where the r ^ I J are in t e g r a l independent c o e f f i c i e n t s 
which constitute a "formula" for H J J . Generating the 
rk I c^ ^ s t l l e most time consuming part of the formation 
of H . Since the Γ^*^ are dependent only on the indices 
of the o r b i t a l s involved i n Φτ and ΦJ they may be used 
for several arrangements of the molecular nuclei (as 
long as the labels involved i n each configuration 
remain unchanged). 

If Ψ i s predominantly one Slater determinant, the 
co e f f i c i e n t s C may be found by many-body-perturbation 
theory ( ,29 ). This theory provides an elegant scheme 
for sim p l i f y i n g the perturbation formulas by combining 
terms r e f e r r i n g to the same I, integrals. 
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In the more general case, Ψ involves several 
Slater determinants with large c o e f f i c i e n t s and corres
ponds to an excited state. In t h i s case no s i m p l i f i e d 
theory i s possible and Η must be constructed. 

The f i r s t step i n constructing Η i s producing the 
l i s t of configurations to be included. At a moderate 
l e v e l of accuracy only the SCF configuration and other 
configurations nearly degenerate with i t need be 
considered. For higher accuracy more configurations 
are needed. These configurations may be c l a s s i f i e d as 
singly, doubly, t r i p l y , . . e x c i t e d depending on the 
least number of excitations required to form the con
fi g u r a t i o n from one of the dominant ones. For fix e d 
r e l a t i v e error i n the ex c i t a t i o n energy of a hydrocarbon 
molecule the number of spin o r b i t a l s increases i n pro
portion to the number of electrons, N. The number of 
k-fold excitations from any one Slater determinant i s 
then proportional to N 2 k. If a l l configurations are 
used to a l l e x c i t a t i o n levels there are ̂ N 4 non-zero 
entries i n each row of Η and about λΝ rows (where λ i s 
a fixed number for fixed r e l a t i v e error and i s about 
10 for a double zeta basis s e t ) . 

As noted before, such a large rate of growth with 
Ν cannot be tolerated. Consequently most CI ca l c u l a 
tions are run with l i m i t e d e x c i t a t i o n l e v e l s ( t y p i c a l l y 
only single and double e x c i t a t i o n s ) . I t i s e a s i l y 
demonstrated, however, that t h i s procedure leads to 
increasing error as the number of electrons increases. 
In fact, for t i g h t l y l o c a l i z e d electron p a i r s , the domi
nant e x c i t a t i o n l e v e l i s the value of k nearest ^O.OIN 
( i . e . , for about 200 electrons the double excitations 
i n aggregate are more important than the SCF configura
t i o n and for 400 electrons quadruple excitations should 
dominate). Even for molecules with only 40 electrons 
quadruple and higher excitations must be considered i n 
order to reproduce e x c i t a t i o n energies (30) or pot e n t i a l 
surfaces to an accuracy of ±0.1 eV. Thus, configuration 
interaction calculations for very large molecules are 
hopeless unless perturbation theory can be used to 
correct for unlinked cluster e f f e c t s . 

For t h i s reason, modern CI calculations are r e a l l y 
l i m i t e d to high accuracy calculations on small mole
cules. With t h i s l i m i t a t i o n both excited and ground 
states may be treated with uniform accuracy provided 
the same procedure i s followed for each state. This 
requires a separate SCF ca l c u l a t i o n , i n t e g r a l trans
formation, and CI cal c u l a t i o n for each desired state. 
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Because of the large number of configurations 
which can be constructed even with just double e x c i t a 
tions, some attention must be paid to l i m i t i n g the 
number which are important. This can be done by con
structing molecular o r b i t a l s which maximize the conver
gence rate of the CI series. Ordinary SCF o r b i t a l s 
o f f e r a reasonable s t a r t i n g set of occupied o r b i t a l s 
(although l o c a l i z e d o r b i t a l s may be better). The SCF 
v i r t u a l o r b i t a l s can be improved, however, by use of 
approximate natural o r b i t a l s (31). These o r b i t a l s are 
distinguished by the fact that they are largest i n the 
regions where the wavefunction error i s largest. In 
terms of such l o c a l i z e d corrections only a few double 
excitations from each of the electron pairs are required 
for reasonable accuracy. 

The actual algorithm for evaluating H J J varies 
greatly between di f f e r e n t research groups. The crudest, 
but most general, approach i s to assume each configura
t i o n i s formed as a short sum of Slater determinants 

ΦΙ " 1\>1 d e t(*vl' ( f )v2--- ( t )vN ) 

which produces a spin-eigenfunction from orthonormal 
s p i n - r e s t r i c t e d s p i n - o r b i t a l s ( i . e . , the spin-up and 
spin-down s p i n - o r b i t a l s occur i n pairs which d i f f e r 
only i n spin). Then H J J i s zero i f a l l of the Slater 
determinants i n Φι d i f f e r by at least three substitu
tions from a l l of the determinants i n ΦJ. Since most 
matrix elements are zero, a rapid test for t h i s con
d i t i o n i s e s s e n t i a l . Usually a configuration i s speci
f i e d by the l i s t of space-orbitals (spin-independent) 
which occur i n every Slater determinant i n the con
fi g u r a t i o n . These space o r b i t a l occupations are speci
f i e d by two binary words where each b i t i s on or off i n 
one word depending on whether the corresponding o r b i t a l 
i s singly occupied or not and on or off i n the other 
word depending on whether the corresponding o r b i t a l i s 
doubly occupied. Boolean arithmetic on these words can 
e a s i l y produce a word which indicates which occupations 
have changed and the b i t count of t h i s word can give the 
number of changes. For those H J J which have to be 
evaluated, there are d i f f e r e n t formulae depending on the 
number of o r b i t a l s by which Φ τ and Φ τ d i f f e r (28,32). 
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Matrix Manipulations 
Storage. One of the more serious computational 

problems i n quantum chemistry i s the storage, manipula
t i o n , and r e t r i e v a l of large arrays of r e a l numbers. 
If some care i s not taken, a ca l c u l a t i o n may be need
l e s s l y l i m i t e d by the storage capacity of central 
memory, disks, or tapes. 

The largest arrays which occur i n calculations are 
of two types. One arises from the electron repulsion 
integrals and grows i n size l i k e the fourth power of the 
number of basis functions. The other i s the configura
t i o n i n t e r a c t i o n hamiltonian matrix which grows l i k e 
the square of the number of configurations. Many other 
smaller arrays, whose size i s proportional to the square 
of the number of basis functions, occur throughout the 
c a l c u l a t i o n . 

For non-symmetric matrices of dimension nxm with 
few zero entries the most e f f i c i e n t storage pattern i s 
rectangular (hereafter referred to as R) with the 
location of the i , j element computed as L 3 i + n ( j - l ) . 
For r e a l symmetric matrices of dimension n, a triangu
l a r pattern (referred to as T) i s used with the location 
of i , j computed as L = i + j ( j - l ) / 2 for i<j Cor 
L = j + i ( i - l ) / 2 for i > j ] . The CI hamiltonian matrix i s 
a large r e a l symmetric matrix with mostly zero entries 
(provided orthonormal configurations constructed from 
orthonormal o r b i t a l s are used). If more than half the 
entries are zero i t i s more e f f i c i e n t to omit zero 
entries and include the index as a lab e l ( i f the word 
length i s long and the matrix i s small enough, t h i s 
l a b e l may be packed into the i n s i g n i f i c a n t b i t s of the 
matrix element). 

The electron repulsion integrals are more com
pli c a t e d to store i f point group symmetry i s used to 
reduce t h e i r number. In general the integrals may be 
c l a s s i f i e d into blocks depending on the symmetry of the 
four o r b i t a l s involved i n the i n t e g r a l [ i , | | . 
Integrals from the block labeled with symmetries 
Γ 1 , Γ 2 , Γ 3 , Γ . can be stored i n s i x d i f f e r e n t patterns: 
RRR, RTR, TTR, RTT, RRT, and TTT where the f i r s t 
l e t t e r t e l l s whether a rectangular ( Γ - , ^ Γ 2 ) or triangular 
( Γ = Γ 2 ) pattern i s used to compute the f i r s t charge 
d i s t r i b u t i o n location L i 2 - T h e second l e t t e r indicates 
whether a rectangular ( Γ ^ Γ . ) or triangular ( Γ 3 = Γ 4 ) 
pattern i s used to compute the second charge d i s t r i b u 
t i o n location L34 and the f i n a l l e t t e r indicates whether 
a rectangular ( Ι \ ^ Γ 3 or Γ 2 ^ Γ 4 ) or triangular ( Γ 1 = Γ ο and 
Γ 9 = Γ 4 ) pattern i s used to compute the i n t e g r a l location 
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L1234- Zero blocks are omitted, of course, and i t i s 
s u f f i c i e n t to consider Ι \ > Γ 2 , Γ > Γ 4 , and Γ - , (Γ - l ) / 2 + 
Γ 2 > Γ ο ( Γ 3 - 1 ) / 2 + Γ 4 . Non-zero integrals over symmetry 
o r b i t a l s or molecular o r b i t a l s are usually not small so 
no further s i m p l i f i c a t i o n i s possible. Non-zero i n t e 
grals over atomic basis functions may be quite small, 
however, and large numbers of these can be omitted i f 
labels are retained. 

Transformations. A frequently occurring step i n 
calculations i s a change of basis v i a a l i n e a r trans
formation. That i s , a new set of basis functions (such 
as molecular o r b i t a l s , group o r b i t a l s , natural o r b i t a l s , 
etc.) are defined as l i n e a r combinations of the o r i g i n a l 
atomic o r b i t a l s , by 

; (r) = I w..f.(r), i=l...d'<c ι j = 1 J i J 

Matrix elements of one-body hermitian operators (such as 
k i n e t i c energy, nuclear a t t r a c t i o n , the Fock operator, 
etc.) have the form 

B i j = JVl)*Bfj(r ) d T 

i n terms of the o r i g i n a l basis functions. The new 
matrix elements 

B i j = /g i(£)*Bg i ( £ ) d T 

are e a s i l y computed from the B.. by the matrix trans
formation 

Β = WfBW. 

If symmetry i s considered, one may also encounter 
unsymmetrical blocks of the Β matrix defined by 

Β χ / 1 , Γ 2 = / Ί , Γ Ι < Ε > * β f j , r 2 ( £ ) d T 

where ϊ ^ , Γ ^ i s the i function i n symmetry block Γ ^ . 
In t h i s case there w i l l be a dif f e r e n t W(^) matrix for 
each symmetry block and one must compute a l l non-
vanishing matrices of the form 
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- ( r 1 , r 2 ) " , - \ Γ 1 ) ? ( Γ 1 , Γ 2 ) Ϊ ( Γ 2 ) · 
Thus, generally, two matrix transformation algo

rithms are required, one for Β stored t r i a n g u l a r l y 
( r l = r 2 ) a n c* o n ® for Β stored rectangularly (Γ^^Γ2). 
The transformation could be written as a double sum 

d l > d 2 
Sij • lz ^kiV^Vk,* \ v 2 ) i j i - i . . . H 1 . J - i . . . H 2 

Direct evaluation i n t h i s form requires d^d2did2 m u l t i 
p l i c a t i o n . On the other hand the m u l t i p l i c a t i o n 
Υ = B / p v NW/r ν followed by WT

/T, NY requires only 
- z( rLL2) I r 2 ) ( r2) _ _ _ 
d l d 2 ( i 2 + d l d l d 2 m u l t i p l i c a t i o n s (or d ^ d ] ^ + d l d 2 d 2 
i f the m u l t i p l i c a t i o n s are done i n the opposite 
order). 

Figures 3,4 show an outline of algorithms for the 
triangular and rectangular cases for matrices small 
enough to f i t e n t i r e l y into high speed core. These 
algorithms are designed with one additional p r i n c i p l e i n 
mind. Namely, the only r e a l v a r i a t i o n between dif f e r e n t 
ways of doing matrix m u l t i p l i c a t i o n i s the cost of 
indexing and amount of scratch storage used. Double 
subscripts should usually be avoided and as far as 
possible matrix elements should be accessed sequentially. 
For t h i s reason i t i s best to carry out the rectangular 
transformation as Y = BÏ r W/P * followed by Β / Γ „ N = 

- - Γ 1 Γ 2 - ( Γ 1 ) -(ΓιΓ2) 
ΣΆ(Τ2)' Scratch storage i s reduced by using each 
column of Y as soon as i t i s formed to do the second 
m u l t i p l i c a t i o n . The triangular transformation i s fu r -
thur complicated by the fact that both Β and Β are 
stored i n a triangular pattern which increases the 
complexity of indexing. 

Transformation of the two electron integrals i s a 
much more time consuming step. If R(ίΊ,i9,in,i.)is the int e g r a l 1 Δ 0 4 

R(Vi 2,i 3,i 4Wf^^ 
and R i s the transformed i n t e g r a l 

5(^' 12' 13' 14>"/βΐ 1^1>*βΐ 2<£ΐ> ΓΪ2βΐ 3^2>*8ΐ 4
(ΐ:2^ τ1 ά τ2 
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INC = ά^ά2 

I ICNT = 0 

For i = 1... cT| 

I LCNT = 0 

For I = 1...d2 

d l 
D(£) = I A(k+ICNT)*B(k+LCNT) 

k=l 

LCNT = LCNT + d 1 

JCNT = 0 

ι For j = Ï...INC in steps of cT| 

d2 
x ( j ) = I D(«*C(X,+JCNT) 

«,=1 

JCNT = JCNT + d 2 

ICNT = ICNT + d ] 

τ 

Figure 3. Transformation of a real non-symmetric matrix, X = 
A T BC 
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ITRI = 0 

ICNT = 0 

For i = 1... cT-j 

LTRI = 0 

CLEAR DU) TO ZERO FOR i = ̂ ...d] 

For ϋ - 1...d1 

I — For k = 1...JM 

DU) = DU) + C(k+ICNT)*B(k+LTRI) 

D(k) = D(k) + CU+ICNT)*B(k+LTRI) 
- 1 _ ( 

LTRI = LTRI+Jt 

D{SL) = D{i) + CU+ICNT)*B(LTRI) 
1 i 

JCNT = 0 

ITR = ITRI+i-1 

I For j = ITRI... ITR 
d l 

X( j+1 ) = I DU)*CU+JCNT) 
«,=1 

JCNT = JCNT+d1 

ICNT = ICNT+d1 

ITRI = ITRI+i 

Figure 4. Transformation of a real symmetric matrix, X = CTBC 
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the R and R are related by a four-index (tensor) trans
formation. 

R ( J 1 , J 2 , J 3 , J 4 ) = Σ . . . w ( r u Η V — W ' 

W ( r 4 ) i 4 J 4 R ( i l , i 2 ' i 3 ' i 4 ) 

Direct evaluation of t h i s four-fold sum would require 
4 d 1 d n d2d2d.3d3d4d4 m u l t i p l i c a t i o n s to form a symmetry 
block of R integrals. By constrast, sequential one-
index transformations 

j 1 , i 2 , i 3 , i 4 ) = Σ w * ( r i ) i i J i R ( i 1 , i 2 > i 3 , i 4 ) 

Y ( J 1 , J 2 > J 3 > J 4 ) β I W ( r 0 ) i 0 j 0
X ( j l , I 2 , I 3 , I 4 ) 

Z U ^ j ^ j g , ^ ) = Σ W * ( r 3 ) i 3 J 3 Y ( J 1 ) J 2 , i 3 ) i 4 ) 
3 

R( J x , 32> J 3 , J 4 ) = I V j i j / ^ r ^ ' V V 1^ 4 4 4 

require only d-id^d^dj^d^ + d 1d2d2d 3d 4 + d 1d2d 3d 3d 4 + d^d2d 3d 4d 4 m u l t i p l i c a t i o n s . These transformations can 
be organized by thinking of R ( i ^ , i 2 , i 3 , i 4 ) for fi x e d 
i o i . as a matrix R( ̂ 3^-4) which i s transformed l i k e a 
3 4 11^2 one-body operator to give 

( i 3 i 4 ) + ( i 3 i 4 ) Υ - ϊ ( Γ ι ) + Β 3 4W ( r 2 >. 

( i 3 i 4 ) 
If the Y matrices are then reorganized to give 
Y(J1J2) matrices by use of 

( i o , i 4 ) _ ( J n J 2 ) 
1 Δ ά 4 ^ l ' J 2 ^S' 4 
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2. DAVIDSON Computational Quantum Chemistry 45 

the R integrals can be formed from 
U l V 

The use of s i x d i f f e r e n t storage patterns for the 
two-electron integrals requires s i x d i f f e r e n t algorithms 
for carrying out the transformation. Only the simplest 
(RRR) w i l l be presented i n d e t a i l here (.33). Since the 
number of integrals usually exceeds the amount of high 
speed core available (and usually low speed core as 
well) a transformation using minimum core w i l l be d i s 
cussed (assuming disk i s large enough to hold one block 
of R). Suppose the integrals R(±i±2±^±^) are o r i g i n a l l y 
arranged so that R(1>1), R(2,1),.. appear i n sequential 
order on a sequential f i l e . The range of (1314) can be 
blocked into d 3 d 4 / n 3 4 groups of size n 3 4 (with a smaller group at the end i f needed). Each group of n 3 4 R matrices can then be transformed by a standard two sub
s c r i p t transformation to leave n 3 4 Y matrices i n sequen
t i a l order ( i n the same space i n core o r i g i n a l l y 
occupied by the R matrices). Storage for the W matrices 
and one scratch region for wTr vR^3"5"4^ are needed i n 

- ( Γ χ ) -
addition to the space for the R arrays. The 3^32 sub
s c r i p t s on each y ( I 3 I 4 ^ array can also be blocked into 
d 1d 2/n 12 blocks of size n 1 2 and the Y arrays can be 
written to disk i n blocks of size n-^2 ̂ Y N 3 4 A S A R A N _ 

dom access f i l e . When a l l R matrices have been trans
formed, a block of Ϋ^1^2^ matrices i s e a s i l y formed i n 
core by reading a l l appropriate pieces from disk. The 
Y arrays can then be transformed by a standard two sub
s c r i p t transformation and written to a sequential f i l e . 
This method requires d^d2n 3 4 words of high-speed core 
for the i n i t i a l R arrays and d 3d 4n^2 words for the Y 
arrays. The intermediate random f i l e contains d 1d 2dqd 4/ 
n12 N34 blocks of size n 1 2

 b v N 3 4 which i s written and 
read only once. Maximum e f f i c i e n c y usually requires 
making the product n 1 2

N 3 4 a s large as possible. Because 
t h i s i n t e g r a l transformation step involved d^ operations 
to transform d 4 integrals i t has gained a reputation as 
a bottleneck i n calculations. Actually, however, u n t i l 
d i s about 60 the formation of d4 integrals (over con
tracted gaussian o r b i t a l s ) takes longer than the trans-
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46 ALGORITHMS FOR CHEMICAL COMPUTATIONS 

formation. For larger values of d i t i s l i k e l y that a 
CI matrix of large dimension w i l l be formed using 
these integrals (or a t h i r d or higher order perturbation 
ca l c u l a t i o n w i l l be done). Usually these uses of the 
integrals are more time consuming than t h e i r production 
so the transformation i s seldom the l i m i t i n g step. 

Eigenvalue algorithms. Matrix eigenvalue problems 
arise i n quantum chemistry at both the SCF and CI l e v e l . 
The Roothaan SCF method requires solving a non-ortho
gonal eigenvalue problem of the dimension of the basis 
set on each i t e r a t i o n for many of the eigenvalues and 
eigenvectors. The CI method usually requires finding 
the lowest few eigenvalues of a large matrix i n an 
orthonormal basis of configurations. 

Several algorithms e x i s t which are suitable for 
finding a l l of the eigenvalues of any matrix of dimen
sion d which can be kept i n central memory. The Jacobi 
plane rotation method i s by far the simplest to program 
and i s reasonably e f f i c i e n t ( 3 4 ) . As i t i s an i t e r a t i v e 
method the running time cannot be rigorously defined, 
but times proportional to d 3 are expected. Other 
methods usually begin with a non-iterative transforma
t i o n to tri d i a g o n a l form followed by ca l c u l a t i o n of the 
eigenvalues and eigenvectors and a back transformation 
to the o r i g i n a l problem ( 3 4 , 3 5 ) . The time required for 
the transformations i s proportional to d 3 while the time 
required to solve the tr i d i a g o n a l problem i s only pro
portional to d 2. 

The Jacobi method i s generally slower than these 
other methods unless the matrix i s nearly diagonal. In 
SCF calculations one i s faced with the non-orthogonal 
eigenvalue equation 

F C = S C Λ 
where Λ i s the diagonal matrix of eigenvalues and C i s a 
matrix of eigenvectors. I f an orthogonalizing transfor
mation W i s known such that WTSW=1, then 

WTF W W"1 C - WT S W W"1 C A 
or 

F T C1 = CT A 
where 

F 1 » WA F W 
and 

C » W C» 

 P
ub

lic
at

io
n 

D
at

e:
 J

un
e 

1,
 1

97
7 

| d
oi

: 1
0.

10
21

/b
k-

19
77

-0
04

6.
ch

00
2

In Algorithms for Chemical Computations; Christoffersen, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1977. 
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Usually on the f i r s t i t e r a t i o n of an SCF cal c u l a t i o n W 
i s computed by the Schmidt orthogonalization method but 
thereafter W i s chosen to be the C matrix from the pre
vious i t e r a t i o n . This produces an F' matrix which i s 
nearly diagonal so the Jacobi method becomes quite 
e f f i c i e n t after the f i r s t i t e r a t i o n . Further, i n the 
Jacobi method, F f i s diagonalized by an i t e r a t i v e 
sequence of simple plane-rotation transformations 
F f/ n + 1N = ΧΤ(η)Ζ' (n)Ht(n V T h e f i n a l eigenvectors of F 
can thus be generatedvaê C = (···(WX(x))X(2)*"'X(n)) which avoids the m u l t i p l i c a t i o n of W by C . 

A disadvantage of the Jacobi method i s that the 
error i n the eigenvector i s usually proportional to 
the square root of the error i n the eigenvalues. Thus, 
in 8 d i g i t arithmetic, only 4 figures can be obtained 
in the eigenvectors. The inverse i t e r a t i o n method of 
Wilkinson (34) i s a method which gives f u l l accuracy i n 
the vectors. This method i s based on computing the 
eigenvector as (X1.-F")C = X where λ i s the eigenvalue 
and X i s a guess to the eigenvector. Because t h i s 
method requires solving a dif f e r e n t set of li n e a r 
equations for each eigenvector i t i s only feasi b l e i f F" 
has an e a s i l y inverted form (solving l i n e a r equations 
i s a d 3 process unless the c o e f f i c i e n t matrix has some 
simplify i n g feature). I f F" i s t r i d i a g o n a l , then the 
time for each vector i s proportional to d so the time 
for d vectors i s proportional to d 2. 

In CI calculations i t i s necessary to f i n d a few 
solutions to the matrix eigenvalue problem 

H C = λ C 
1 5 

where Η i s of dimension from 10 to 10 . For smaller 
dimensions i t i s most e f f i c i e n t to use the standard 
t r i d i a g o n a l i z a t i o n routines. For matrices which are too 
large to f i t into high-speed core, special methods have 
been developed whose time per eigenvalue i s proportional 
only to the number of non-zero matrix elements ( d 2 at 
most). These methods should be useful i n other areas of 
chemistry as we l l . 

The f i r s t development i n t h i s area was the Nesbet 
method (36) for finding the lowest (or highest) eigen
value. This method was reorganized into a better 
algorithm by Shavitt (37) and then extended by Shavitt, 
et a l . (3j3) to f i n d a few non-degenerate eigenvalues. 
Recently Davidson (39) has combined the fundamental 
ideas from Nesbet, Lanczos and inverse i t e r a t i o n schemes 
to form a method which works for the f i r s t few eigen
values even i f they are degenerate. His method, however, 

American Chemical 
Society Library 
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Washington, D. C. 20036 
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involves a l i t t l e more input-output than the Nesbet or 
Shavitt methods. 

The basic concept of the Nesbet-Shavitt method i s 
based on i t e r a t i v e sequential optimization of the eigen
vector elements. If the quantity p(C)=CTHC/CTC i s known 
for some C° and p 0 = a p ( C 0 ) i s below a l l the diagonal 
elements of H, then sequential minimization of p(C) 
with respect to each element C± [ i . e . solving 
( 3 p / a c . ) n o =0 and then stepping C? to the new C. 
before going to the next value of i ] gives 

6C. = C.-C° = -[(Η-ρ1)0°]./(Η..-ρ) 
where 

ρ = p(C° + e.ôC.) 

while for any value of 6C^ 

26C,[(H-p°l)C°], + (6C.) 2[H. . -p° ] 
p(C°+e.6C.)-p(C 0) - i ^ ^ ^ 

1 1 C° C° + (6C±) + 2C°6Ci 

Nesbet approximated the optimum 6C^ by 

6C. = -q^/CH..-ρ 0) 
where 

q° = [(H-p°l)C°]JL 

while Shavitt found 6C. from the s l i g h t l y more exact 
formula 1 

6C.=-2q° / {Η..-ρ° + /(Η..-ρ° )2-4q° [-q°+q(H i :.-p0 ) ]/C°TC° } . 

Both of these formulas can be shown to give monotonie 
convergence for p . More importantly, Shavitt showed 
how use of the hermitian property of H could be used to 
write HC as 

(HÇ). = I H C = Σ H C. + j H C 
J j < i J j>i J J 

so that E±j and Hj^ did not both need to be stored and 
read from external store. Shavitt et a l . further 
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modified the Nesbet-Shavitt scheme to do excited states 
by introducing root-shifting and over-relaxation to 
speed convergences. Their method, however, often f a i l s 
to converge for nearly degenerate eigenvalues. 

Davidson introduced a different method for higher 
eigenvalues which also avoids the need to have the ele
ments of H stored in any particular order. In this 
method the k£h eigenvector of H for the η·^ iteration is 
expanded in a sequence of orthonormal vectors b i , 
ΐ=1···η with coefficients found as the k— eigenvector 
of the small matrix Η with elements b^HBj. Convergence 
can be obtained for a reasonably small value of η i f the 
expansion vectors b are chosen appropriately. Davidson 
defined 

ç k
( n ) - l 4 l \ 

a ( n ) - [H-p(c<n))i]c£n) 

and chose b n+i as the normalized residual when ξ/ ' was 
orthogonalized to the preceeding ]>]_··-bn. This choice 
for b n+l i s similar to the Nesbet choice (and also to f i r s t order perturbation theory and the inverse itera
tion method). By the excited state variation theorem, 
the k-tfi eigenvalue of H as i t i s sequentially bordered 
w i l l decrease monotonically to the k-ίΛ eigenvalue of H. 
Butscher and Kammer (40) have shown how a slight 
modification of this scheme which tracks on certain 
large elements of C rather than the index k can find a 
C with a certain desired pattern of coefficients without 
prior knowledge of the value of k and without finding 
any other eigenvectors. 
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3 
Rational Selection of Algorithms for Molecular 

Scattering Calculations 

ROY G. GORDON 
Harvard University, Cambridge, MA 02138 

Scattering theory i s the l i n k between intermolecular forces, 
and the various experiments with molecular beams, gases, e t c . , 
which depend on collisions between molecules. This l i n k i s used 
in both d i rec t ions : In the theoret ica l approach the in te r 
molecular forces are used to predict the outcome of experiments. 
In the empirical approach, experimental resul ts are inverted or 
analyzed to obtain information about the intermolecular p o t e n t i a l . 

For most molecular scat ter ing phenomena, it i s usual ly 
assumed that n o n r e l a t i v i s t i c quantum mechanics provides an 
accurate descr ip t ion . Therefore, one might expect the field of 
molecular collision phenomena to be n i c e l y uni f ied by the 
appl icat ion of n o n r e l a t i v i s t i c quantum-mechanical scat ter ing 
theory. Instead, one finds a bewildering var ie ty of methods, 
approximations, techniques, formulations and reformulations are 
used to treat molecular collisions. One might be tempted to 
blame th is multitude of approaches on the conceit o f the many 
theoret icians who have worked i n th is area, each developing his 
own point of view. In fact , th i s var ie ty i s more nearly due to 
the fol lowing two circumstances: 1. Exact quantum mechanical 
scat ter ing ca lculat ions are not yet feasible for all types of 
molecular collisions. Therefore some types of approximations are 
necessary to treat the quantum mechanically int ractable cases. 
2. The very richness and var ie ty of molecular scat ter ing pro
cesses require that a number of di f ferent approximation methods 
be used i n di f ferent s i tua t ions . 

We believe that suitable methods have i n fact been 
developed, to treat successful ly almost all types of molecular 
collisions. The question thus a r i ses : How do we select the most 
appropriate method for a given problem? In Section II we discuss 
some criteria for choosing between methods. In section III we 
propose an e x p l i c i t algorithm for se lect ing the best avai lable 
method for a given collision process, and for a given set o f 
experiments measuring that process. Then we apply th i s algorithm 
to a number o f examples, mainly from i n e l a s t i c scat ter ing. It i s 
hoped that these examples will illustrate the way in which one 

52 
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should choose between methods, and the kind of information such a 
choice requires . 

In addi t ion, the examples described in Section III are a l l 
chosen to represent rea l cases for which ca lcula t ions have been 
completed, or are in progress. Thus, they provide a guide to 
some recent appl icat ions of each of the methods discussed, and the 
reader himself can evaluate the state of the art i n appl icat ions 
of each method. 

C r i t e r i a for Choosing an Appropriate Scattering Theory 

In order to make a ra t iona l se lect ion of a scat ter ing theory 
to apply to a spec i f i c problem, we must formulate c r i t e r i a upon 
which t h i s choice i s to be based. It seems to us that there are 
three main considerations: 

F e a s i b i l i t y . It i s necessary that the method be appl icable , 
in a p r a c t i c a l sense, to the problem of in teres t . D i f f i c u l t i e s 
may occur at various stages: analyt ic d i f f i c u l t i e s (e.g. in 
evaluating matrix elements, or in transforming coordinate systems); 
exceeding memory s ize or running time of computers; d i f f i c u l t i e s 
i n averaging and analysis of resul ts into a form to compare with 
experiments. 

Accuracy. The resul ts must be s u f f i c i e n t l y accurate to 
interpret the experiments of in te res t . In a complete quantum-
mechanical ca l cu la t ion , th i s accuracy can be v e r i f i e d by conver
gence tests within the ca lcu la t ion . In c l a s s i c a l , or other 
approximate methods, accuracy and r e l i a b i l i t y general ly must be 
judged by experience with test comparisons with complete quantum-
mechanical ca lcu la t ions . The numerical s t a b i l i t y of the method 
must also be considered. 

Ease of Ca lcu la t ion . When more than one method meets the 
above c r i t e r i a of f e a s i b i l i t y and accuracy, one has the luxury of 
choosing the easiest of the possible methods. Some considerations 
i n the "case" of ca lcu la t ion might include the fol lowing: I f the 
evaluation of the in teract ion potent ia l i s d i f f i c u l t (as i t i s 
l i k e l y to be i n any r e a l i s t i c case), one would prefer the method 
which requires the smallest number of values of the p o t e n t i a l . 
Other considerations might be the complexity and cost of the 
computer ca lcu la t ions , and the a v a i l a b i l i t y of well-documented and 
r e l i a b l e computer programs. 

Next we must discuss the spec i f i c methods of ca lcu la t ion 
which we sha l l recommend, in the l igh t of the three c r i t e r i a 
discussed above. 

Quantum Scattering ("close coupling") (1). The f e a s i b i l i t y 
of a f u l l quantum scatter ing ca lcu la t ion depends mostly upon the 
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number (N c) of internal states which are coupled together by the 
in teract ion po ten t i a l , during the strongest part of the c o l l i s i o n . 
The most e f f i c ien t quantum scat ter ing method current ly avai lable 
i s based on piecewise analyt ic solut ion to model potent ia ls which 
approximate the true potent ia l to any prescribed degree of 
accuracy (2). Piecewise l inear model potent ia ls usual ly provide 
suf f ic ient accuracy, along with an accurate and e f f i c ien t algo
rithm for the ca lculat ions (2). More accurate model potent ia ls 
can now be based on piecewise quadratic approximations, for which 
an ef fect ive solut ion algorithm has now been devised (3). While 
one can program th i s method to work with whatever s ize computer 
i s avai lable (using disk storage i f necessary), the number of disk 
accesses becomes rather large unless the computer memory i s large 
enough to store at least eight N c by N c matrices (8 N c ^ numbers). 
Up to about 100 N c ^ mul t ip l ica t ions and additions are required to 
construct a s ingle scat ter ing matrix. These storage and timing 
r e s t r i c t i o n s current ly r e s t r i c t feasible ca lculat ions to N c about 
100 or l ess . Thus a number of approximations are being explored, 
which may reduce the number N c . These include the use of ef fec
t ive Hamiltonians (4-9) and j z conserving approximations (10-12). 
Very promising resul ts are being obtained, and these approxima
t ions should allow the use of quantum scatter ing methods to be 
used for a much wider range of molecules. 

The accuracy of the quantum scat ter ing resu l ts i s l imi ted 
mainly by the number o f in terna l states included (close-coupling 
approximation). Therefore one must check that the predict ions of 
interest converge as one increases the number of internal states. 
The accuracy of the rad ia l integrat ion can be set at any pre
determined value. Further work (13) has s impl i f i ed the perturba
t ion formulas for se t t ing the accuracy of the r a d i a l in tegrat ion. 
The method was constructed to be numerically stable, and in 
pract ice not more than two d i g i t s are lost in roundoff error , even 
in ca lculat ions involving mi l l i ons of arithmetic operations. 

As for ease of c a l c u l a t i o n , only a small number (say 30) o f 
r ad ia l integrat ion points are required, so that not too many 
evaluations of the potent ia l are necessary. A complete computer 
program for quantum-mechanical e l a s t i c and i n e l a s t i c scatter ing i s 
avai lable (14). 

The quantum theory of react ive scatter ing i s not as highly 
developed as for i n e l a s t i c scat ter ing. No generally applicable 
algorithm has yet been perfected, p a r t i c u l a r l y for three-dimen
sional react ions. However, many promising approaches are being 
explored. 

Distorted Wave Bom Approximation. Quantum scatter ing c a l 
culat ions are sometimes made using the dis tor ted wave Born approx
imation (15). Such ca lculat ions have the advantage of almost 
always being feasible numerical ly. For simple cases, one can also 
obtain some resul ts a n a l y t i c a l l y (16). However, the accuracy o f 
the resul ts i s generally poor, for most molecular c o l l i s i o n s . A 
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necessary condit ion for the resul ts to be accurate, i s that a l l 
the calculated t rans i t ion p r o b a b i l i t i e s be small compared to 
uni ty . However, t h i s i s not a su f f ic ient condit ion, since small 
t r ans i t ion p r o b a b i l i t i e s can resul t from fortuitous cancel la t ion 
of large negative and pos i t i ve contributions to the perburbation 
in tegra l s . One can test for th i s p o s s i b i l i t y by checking whether 
the sum of a l l the perturbation integra ls remains small as we 
bu i ld them up by adding on contributions from the various rad ia l 
in te rva l s . This provides both a necessary and suf f ic ient condi
t ion for the v a l i d i t y of perturbation theory. 

C l a s s i c a l Mechanics. The descr ipt ion of scat ter ing by 
c l a s s i c a l mechanics has the important advantage o f almost always 
being feasible to carry out. Only three circumstances occasion
a l l y make i t d i f f i c u l t to obtain resul ts with c l a s s i c a l scatter ing 
theory: 1) There may be points at which the coordinates chosen 
for integrat ion become singular or undefined (17). I f a t ra j ec 
tory approaches one of these points , the numerical integrat ion may 
break down. Such d i f f i c u l t i e s may be avoided by changing coord i 
nate systems. 2) I f some coordinates change much more rap id ly 
than others, the equations become d i f f i c u l t to integrate numeri
c a l l y . These d i f f i c u l t i e s may be reduced by using action-angle 
coordinates for the rap id ly varying coordinates (18), and by using 
a very stable and accurate integrat ion technique, such as Runge-
Kutta. 3) Some t ra jec tor ies in both i n e l a s t i c (19) and 
reactive (20) c o l l i s i o n s are long and complicated, corresponding 
to resonances or long- l ived c o l l i s i o n complexes. Unless one 
r e a l l y needs to know the de ta i l s o f such c o l l i s i o n s , i t i s pro
bably best to use a s t a t i s t i c a l theory to describe the d i s t r i b u 
t ion of resul ts for these c o l l i s i o n s . 

Semiclassical Methods. The accuracy of c l a s s i c a l c a l c u l a 
t ions i s usual ly adequate when the experiments of interest average 
over at least several quantum states. If, however, no c l a s s i c a l 
t ra jec tor ies connect the i n i t i a l and f i n a l states of motion, the 
c l a s s i c a l predic t ion i s a vanishing cross section or rate constant 
for that process. The correct quantum-mechanical predic t ion may, 
however, be a small but non-zero rate for such a " c l a s s i c a l l y 
forbidden" process. "Tunneling" through a potent ia l bar r ie r i s a 
simple example. The connection formulas i n the WKB method may be 
viewed as providing a complex-valued t ra jectory which does l i n k 
the " c l a s s i c a l l y forbidden" states. In the WKB treatment, the 
p robab i l i t y for passing through th is complex t ra jectory , i s 
re lated to the exponential o f the imaginary part of the c l a s s i c a l 
action function accumulated along the complex path. Recently, 
th i s treatment has been generalized to i n e l a s t i c and reactive 
scatter ing (21-24). The main d i f f i c u l t y at present i n applying 
th i s method, i s f inding the actual complex t ra jec tor ies i n a 
numerically stable way. Several approaches have been suggested, 
and th i s i s an active f i e l d of current research. One should note 
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that the method appears also to require that the interact ion 
potent ia l be an analyt ic function of a l l i t s coordinates, so that 
i t , too, can be a n a l y t i c a l l y continued. Whether a continuation 
method can be applied to a potent ia l defined by a table of numer
i c a l values and some interpola t ion formulae, i s not c lear at 
present. Another p r a c t i c a l problem with the semiclassical 
method, i s the numerical search for t ra jec tor ies with spec i f i c 
(quantized) values of the i n i t i a l and f i n a l momenta (quantum 
numbers). For molecules with several internal degrees of freedom, 
th i s may be a d i f f i c u l t task. Furthermore, i f there are more than 
several t ra jec tor ies with the same i n i t i a l and f i n a l quantum 
numbers (as i s t y p i c a l l y the case when the t ra jec tor ies are 
complicated), then the semiclass ica l resul ts may not be very 
accurate. 

When c l a s s i c a l mechanics i s applied to experiments involving 
only one or two quantum states, the resul ts are generally less 
accurate than for the cases involving averages over many quantum 
states. However, even simple correspondence p r i n c i p l e arugments, 
assigning c l a s s i c a l resul ts to the quantum state of nearest 
angular momentum, predict l ine-broadening cross sections to an 
accuracy comparable to the experimental uncertainty (19,25-27). 
Moreover, by including interference effects between dif ferent 
t ra jec tor ies (28-32), one can make f a i r l y accurate predict ions for 
e l a s t i c (28) v i b r a t i o n a l l y (33) and ro ta t iona l l y (34) i n e l a s t i c , 
and reactive (35) scat ter ing. This i s a very useful approach, 
which w i l l ce r ta in ly be used more in future ca lcu la t ions , to 
improve the accuracy of c l a s s i c a l predic t ions . The semiclassical 
approach has been reviewed recently by Connor (36). 

C l a s s i c a l Path. Another approach to scatter ing ca lculat ions 
uses a quantum-mechanical descr ipt ion o f the interna l states, but 
c l a s s i c a l mechanics for the t rans la t iona l motion. This "c lass ica l 
path" method has been popular in line-shape ca lculat ions (37,38). 
It i s almost always feasible to carry out such ca lculat ions i n the 
perturbation approximation for the internal states (37). Only 
recent ly have p r a c t i c a l methods been developed to perform non-
perturbative ca lculat ions i n th i s approach (39). 

To get accurate resul ts from th i s approach, i t i s necessary 
that the c o l l i s i o n a l changes i n the internal energy be small 
compared to the t rans la t iona l energy. Then one can accurately 
assume a common t rans la t ion path for a l l coupled internal states. 
In the usual appl icat ions o f t h i s method, one does not include 
interference effects between dif ferent c l a s s i c a l paths, so that 
t rans la t iona l quantum effects , including to ta l e l a s t i c cross 
sections, are not predicted. I f the perturbation approximation i s 
also used, accuracy can be guaranteed only when the sum of the 
t r ans i t ion p robab i l i t i e s remains small throughout the c o l l i s i o n . 

These c l a s s i c a l path ca lculat ions are r e l a t i v e l y easy to 
carry out, and analyt ic resu l ts are avai lable in the s t r a i g h t - l i n e 
path, perturbation l i m i t (40). Thus when the approximations are 
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v a l i d , th i s c l a s s i c a l path approach should be used. 

An Algorithm for Choosing an Appropriate Scattering Theory 

Using the c r i t e r i a discussed above, we wish to select the 
easiest method of ca lcu la t ion which i s both feasible to apply to 
the molecules of in te res t , and whose resul ts are s u f f i c i e n t l y 
accurate to describe the relevant experimental r esu l t s . We have 
found i t convenient to organize th is se lect ion process into a flow 
chart, which i s given in F i g . 1. S tar t ing at the top, one makes a 
sequence of decisions based upon the c r i t e r i a for f e a s i b i l i t y and 
accuracy. Decisions about the re la t i ve ease of di f ferent methods 
are not made e x p l i c i t l y ; they are i m p l i c i t in the organization o f 
the flow chart. 

When one's path in the flow chart reaches a box with no l ines 
going out from i t , and double underlines at i t s bottom, one has 
arr ived at the most suitable method. In some cases, one's d e c i 
sion at some point may be condit ional on a var iable i n the prob
lem. For example, t r ans i t ion p r o b a b i l i t i e s may be small compared 
to unity for large o r b i t a l angular momenta, but not for small 
ones. In such cases one should follow both branches of the 
decis ion, and arr ive at two di f ferent methods, one for each range 
of the var iab le . In a few such cases, both branches may la te r 
r e j o i n , and only one method i s recommended after a l l . In more 
d i f f i c u l t cases, as many as three di f ferent methods have been 
found to be necessary for di f ferent ranges of the var iab les . 
Examples of a l l these cases have been found. 

We f i r s t follow the flow chart for the simple case of e l a s t i c 
scat ter ing of structureless atoms. The number of in terna l states, 
N c , i s one, quantum scatter ing ca lculat ions are feasible and 
recommended, for even the smallest modern computer. The Numerov 
method has often been used for such ca lculat ions (41), but the 
recent method based on analyt ic approximations by Ai ry functions 
(2) obtains the same resul ts with many fewer evaluations of the 
potent ia l function. The WKB approximation also requires a r e l a 
t i v e l y small number of function evaluations, but i t s accuracy i s 
l imi ted , whereas the piecewise analyt ic method (2) can obtain 
resul ts to any preset, desired accuracy. 

Next we consider ro ta t iona l l y i n e l a s t i c scat ter ing of H2 with 
He. At room temperature, the maximum rota t iona l angular momentum 
state which i s s i g n i f i c a n t l y populated i s j m a x = 4. Thus we 
estimate N c = (j m a x/2 + l ) 2 = 9, inc luding a l l the m-states. The 
data storage 8NC2 i s less than 1000 numbers, only a small addit ion 
to the quantum scatter ing program code (about 100 K-bytes). 
Assuming a mult ip ly time of 1 y - s e c , 100 N c

3 i s less than 0.1 sec 
computer time per S matrix. Thus the quantum scatter ing c a l c u l a 
t ions are quite p r a c t i c a l , and have been car r ied out for more than 
a dozen di f ferent potent ia l surfaces (42). The resul ts are in 
good agreement with molecular beam resu l t s , sound absorption, and 
l ine shapes in l igh t scatter ing and NMR. Because of the wide 

 P
ub

lic
at

io
n 

D
at

e:
 J

un
e 

1,
 1

97
7 

| d
oi

: 1
0.

10
21

/b
k-

19
77

-0
04

6.
ch

00
3

In Algorithms for Chemical Computations; Christoffersen, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1977. 



ALGORITHMS FOR CHEMICAL COMPUTATIONS 

START 
— — 1 I _ 

Let Nc be the maximum number of internal states or basis functions which are coupled 
during collision. Do about 8/V j numbers fit into your computer's memory, and can you 
afford about IQQ.V,? multiplications on your computer, per S matrix? 

yes 

Calculate exact quantum scattering results by the method of piecewise analytic 
solutions (ref. (2)). Do the results converge as internal states are added ? 

Do all the experiments you arc interpreting average 
over more than about 10 internal states? 

yes 

Can you find complex classical 
trajectories which connect the 
quantum states of interest? 

yes 

Accept these quantum 
scattering results. 

Do real classical trajectories 
connect the initial and final 
quantum states of interest? 

yes 

Compute your results from analytically 
continued classical mechanics : 
(complex) trajectories (ref. (21-24)) 

Compute your results using these real 
trajectories, plus a correspondence 
principle, if necessary (ref. (25-27)). 

Do any of the experiments of interest have angular resolution sufficient to resolve oscilla
tions due to quantum interference or to observe the total elastic cross section? 

yes 

Try a calculation using the Distorted Wave 
Born Approximation (ref. ( i s» . Are all the 
transition probabilities Σ'| T,j \ at all 
radii during collision? * 

yes 

Are the changes in internal energy 
small compared to the translational 
lenergy? 

yes 

Accept the results of the Distorted 
Wave Born Approximation. 

—— ΊΤ ,. . 

Use a fixed classical path, independent of internal states, and perturbation 
theory on the internal states (ref. (37)), Are all the transition probabilities 
^' I Ty I a i a ' 1 times during the collision? 

yes 

Accept these results. 

Let Ni be the number of initial states of interest. Can you fit Nc(Nc+2Ni) numbers 
in your computer memory, and can you afibrd about 50N&NC+Ni) multiplications 
on your computer, per S matrix ? 

yes 

Compute "classical" S-matriccs (ref. (31)) I 
with interferences between different trajectories/' 

Accept the results of this classical path, 
quantum internal states calculation. 

Use a fixed classical path, independent 
of internal states, with an exact, non-
perturbative treatment of internal 
states, (ref. (3 9 ))· Do these results 
converge as internal states are added ? 

Figure 1. Flow chart for choosing an appropriate scattering theory 
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3. G O R D O N Molecular Scattering Calculations 59 

spacing of the rota t iona l l eve l s , and the r e l a t i v e l y weak angle-
dependent po ten t i a l , these resul ts converge very quickly as j m ax 
increases, and j m ax = 4 i s adequate for a l l the experiments at 
temperatures up to 3 0 0 ° K . 

For c o l l i s i o n s of H 2 with atoms at higher energies, both 
v ibra t iona l and rotat ional exc i ta t ion occurs. At 1 eV, about 50 
channels are open. For a complete quantum scatter ing ca l cu la t ion , 
we estimate data storage at 8 N C

2 - 20,000 s ingle prec i s ion words, 
and computer time of 12 sec per S matrix (again assuming a 1 y-sec 
mult ip ly t ime). Convergence i s obtained with the addit ion of a 
few closed channels, and such ca lculat ions are feas ib le , and have 
recently been car r ied out for H 2 + He (43), and H 2 + L i + (44). 

For v ib ra t iona l and ro ta t iona l re laxat ion o f D 2 at 1 eV, 
about 140 channels are open, so the quantum scatter ing estimates 
are about 160,000 numbers i n data storage, and about 5 min com
puting time per § matrix, or 2 sec per i n i t i a l condit ion. While 
such ca lculat ions are feasible on a large computer, they might be 
too expensive. Then, i f one i s averaging over ro ta t iona l states 
to f ind v ibra t iona l t r a n s i t i o n p r o b a b i l i t i e s , the flow chart 
suggests c l a s s i c a l t r a j ec to r i es . However, the v ibra t iona l 
coupling i s so weak that no rea l t ra jec tor ies connect di f ferent 
v ibra t iona l states, so complex t ra jec tor ies must be calculated to 
f ind the v ib ra t iona l t r a n s i t i o n p r o b a b i l i t i e s (45). One should 
note, however, that i f one wants to f ind a l l the indiv idua l 
ro ta t ion-v ibra t ion t rans i t ion p r o b a b i l i t i e s , the quantum c a l c u l a 
t i o n , at 2 sec per i n i t i a l condi t ion, uses less computer time than 
the complex t ra jectory c a l c u l a t i o n , which requires about 2 sec per 
complex t ra jectory , and a search o f several complex t ra jec tor ies 
for each i n i t i a l condit ion. 

I f we consider the c o l l i s i o n s of two molecules (rather than 
atom + molecule, as above), the number of coupled channels i s 
approximately the square of the number of accessible internal 
states of e i ther molecule separately. Thus for ro ta t iona l e x c i 
ta t ion of two hydrogen molecules near room temperature, N c £ 
( j m a x /2 + 1)4 = 81 for j m a x = 4, and quantum calculat ions are 
feas ib le . However, for v ibra t ion- ro ta t ion t rans i t ions at 1 eV, 50 
internal states for each molecule correspond to N c = 2500 
channels, and exact quantum ca lcu la t ions are not feas ib le . If we 
want indiv idua l t r ans i t ion p r o b a b i l i t i e s for th i s case, the flow 
chart brings us to t ry the dis tor ted wave Born approximation, 
which i s feasible and accurate for th i s case. 

Next we consider some more d i f f i c u l t cases, in which several 
methods are recommended for di f ferent parts of the c a l c u l a t i o n . 
For ro ta t iona l exc i ta t ion of HC1 by Ar at room temperature, the 
maximum rota t iona l angular momentum quantum number coupled during 
c o l l i s i o n i s about 12. The maximum number of coupled j,m states 
i s N c = (jmax + 1) Umax + 2 ^ 2 = 9 1 » s i n c e H C 1 i s a heterodiatomic 
molecule, and thus a l l states o f the same t o t a l pa r i t y are 
coupled. With 91 channels, the quantum scatter ing ca lculat ions 
are feas ib le , but rather expensive. A further complication of the 
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60 ALGORITHMS FOR CHEMICAL COMPUTATIONS 

quantum calculat ions for th i s case, i s the fact that many bound 
states of HC1 + Ar ex is t , which w i l l lead to many resonances in 
the scat ter ing, and thus d i f f i c u l t energy averaging the cross 
sections. Thus we explore the al ternat ive methods with the flow 
chart. For interpret ing infrared l ine-widths, we average over the 
2j + 1 m-states. For an i n i t i a l j greater than 5 we thus average 
over enough m states so that the c l a s s i c a l method, plus the 
correspondence p r i n c i p l e , i s adequate for these cases. For the 
low-j l i n e s , we observe that in the absence of d i f f e r e n t i a l cross 
section measurements, we do not require a "high resolution" 
quantum ca lcu la t ion . The rota t iona l energy changes, for the low 
j states, are small compared to the typ ica l t rans la t iona l ener
gies , so the fixed c l a s s i c a l path approximation i s v a l i d . For 
c o l l i s i o n s at large impact parameter, the c l a s s i c a l path-pertur
bation theory resul ts are of acceptable accuracy. However, for 
small impact parameter cases, the perturbation theory f a i l s . To 
select a method for the remaining cases we note that the maximum 
number of coupled i n i t i a l states up to j = 5 i s N c = (j +1) 
(j + 2)/2 = 21. The storage estimates for a n o n - p e r t u r b â t i v e 
c l a s s i c a l path ca lcu la t ion are thus 91(91 + 2x21) * 21,000 
numbers, and computer time 50(91) 2(91 + 21) χ 10 sec = 46 sec 
per S matrix. This c l a s s i c a l path method i s thus feasible for the 
remaining i n i t i a l condit ions, and has been used (39) to calculate 
infrared and NMR l i n e shapes for th i s system. 

For a heavier system, such as + Ar, a ca lcu la t ion of 
rota t ional t rans i t ions and microwave or infrared l i n e widths would 
follow the same course through the flow chart, as that followed 
above i n de ta i l for HC1 + Ar. However, at the las t stage (low j , 
small b c o l l i s i o n s ) , the number of coupled states would probably 
be too large for the n o n - p e r t u r b â t i v e , f ixed c l a s s i c a l path 
ca lcu la t ion to be p r a c t i c a l . Then one should calculate "c lass ica l 
S matrices" including interference between t ra j ec to r i es , to cover 
these remaining c o l l i s i o n s . 

Conclusion 

The theory o f molecular scat ter ing has now been developed to 
the point that scatter ing ca lculat ions can be made with an 
accuracy suf f ic ient for comparison with current experiments. Thus 
any discrepancy between theory and experiment should be traced to 
an inadequate knowledge of the interact ion potent ia l s , or to 
experimental er rors , rather than to approximations i n the 
c o l l i s i o n dynamics. This t ighter coupling of theory and exper i 
ment should permit a much more f r u i t f u l u t i l i z a t i o n of the resul ts 
of molecular beam scat ter ing. 

Abstract 

A critical discussion is given of some of the more useful and 
accurate methods for the ca lcu la t ion of cross sections for various 
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3. GORDON Molecular Scattering Calculations 61 

types of molecular collisions. Quantum mechanical, classical and 
semiclassical methods are considered. Criteria are summarized for 
the feasibil ity of various calculations, and for the accuracy of 
the results. A flow chart is formulated, which uses these 
criteria to select, for given molecules and types of experiments, 
the easiest calculational algorithm which yields accurate results. 
Examples of this selection process are given, drawn mainly from 
recent calculations of inelastic scattering. 
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4 
Molecular Dynamics and Transition State Theory: 

The Simulation of Infrequent Events 

CHARLES H. BENNETT 

IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598 

Before the advent of the high speed digital compu
ter, the theoretical treatment of atomic motion was 
1imited to systems whose dynamics admitted an approxi
mate separation of the many-body problem into analyti
cally tractable one- or two-body problems. Two approx
imations were the most useful in making this separa
tion: 

1) Stochastic approximations such as 'random walk' or 
'molecular chaos', which treat the motion as a succes
sion of simple one- or two-body events, neglecting the 
correlations between these events implied by the over
-all deterministic dynamics. The analytical theory of 
gases, for example, is based on the molecular chaos 
assumption, i.e. the neglect of correlations betweeen 
consecutive c o l l i s i o n partners of the same molecule. 
Another example is the random walk theory of diffusion 
in solids, which neglects the dynamical correlations 
between consecutive jumps of a diffusing l a t t i c e vacan
cy or interstitial. 

2) the harmonic approximation, which treats atomic 
vibrations as a superposition of independent normal 
modes. This has been most successfully applied to sol 
ids and free molecules at low temperatures, where the 
amplitude of osc i l l a t i o n i s small enough to remain in 
the neighborhood of a quadratic minimum of the poten
tial energy. 

Transition state theory (1), the traditional way 
of calculating the frequency of infrequent dynamical 
events (transitions) involving a bottleneck or saddle 
point, typically had to call on both these approxima
tions before yielding quantitative predictions. 

Because of the unavailability of a method for 
solving the classical many-body problem directly, the 
harmonic approximation was sometimes stretched, or sto
chastic behavior assumed too early, in an effort to 

63 
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64 ALGORITHMS FOR CHEMICAL COMPUTATIONS 

predict equilibrium thermodynamic properties, transport 
c o e f f i c i e n t s , and t r a n s i t i o n rates i n systems that were 
too strongly coupled and too anharmonic for the r e s u l t s 
to be r e l i a b l e . In the l a s t two decades t h i s s i t u a t i o n 
has been r a d i c a l l y changed by the a b i l i t y of computers 
to integrate the c l a s s i c a l equations of motion (the 
c l a s s i c a l t rajectory or molecular dynamics 'MD1 tech
nique, cf r e f s . 2, 3, 4, and reviews 5, 6) for systems 
of up to several thousand p a r t i c l e s , thereby making i t 
possible to attack by d i r e c t simulation such previous
l y - i n t r a c t a b l e problems as the equilibrium and trans
port properties of l i q u i d s and hot anharmonic s o l i d s , 
chemical reactions i n gases, the structure of small 
droplets, and conformational rearrangements i n large 
molecules. In addition to providing dynamical informa
t i o n , the molecular dynamics method (as well as the 
Monte Carlo (MC) method of Metropolis et. aK 7, 8, 6) 
i s r outinely used to calculate equilibrium thermodynam
i c properties i n many of the same systems (especially 
l i q u i d s ) , when these cannot be obtained a n a y t i c a l l y . 
The scope of these c l a s s i c a l simulation techniques i s 
determined by a number of considerations: 

1) They are not applicable to strongly quantum me
chanical systems, l i k e l i q u i d or s o l i d H or He, i n 
which the thermal de Brogue wavelength (h//27rmkT) i s 
comparable to the atomic dimensions; 

2) They are unnecessary when the harmonic or random 
walk approximations are v a l i d , (e.g. i n c a l c u l a t i n g the 
thermodynamic properties of cold s o l i d s or d i l u t e gas
es) . 

3) The potential energy surface ( i . e . the potential 
energy expressed as a function of the atomic positions) 
on which the c l a s s i c a l t rajectory moves i s almost a l 
ways semi-empirical and rather imprecisely known, be
cause accurate quantum mechanical claculations of i t 
are impossibly expensive except i n the simplest sys
tems. For use i n a MD or MC program, the potential 
energy must be rendered into a form (e.g. a sum of 
two-body and sometimes three-body forces) that can be 
evaluated repeatedly at a cost of not more than a few 
seconds computer time per evaluation. 

4) The methods are of course r e s t r i c t e d to simulating 
systems of microscipic size ( t y p i c a l l y between 3 and 
10,000 atoms). This i s not a very serious l i m i t a t i o n 
because on the one hand, with e x i s t i n g algorithms, sim
u l a t i o n cost increases only a l i t t l e faster than l i n 
early with the number of atoms; and, on the other hand, 
a system of 1000 atoms or less i s generally large 
enough to reproduce most macroscopic properties of mat
te r , except for long range fluctuations near c r i t i c a l 

 P
ub

lic
at

io
n 

D
at

e:
 J

un
e 

1,
 1

97
7 

| d
oi

: 1
0.

10
21

/b
k-

19
77

-0
04

6.
ch

00
4

In Algorithms for Chemical Computations; Christoffersen, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1977. 
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points. 
5) The most serious p r a c t i c a l l i m i t a t i o n of molecular 

dynamics comes from i t s slowness: for a small (10-20 
atom) system each second of computer time s u f f i c e s to 
simulate about 1 picosecond of physical time, whereas 
one i s often interested i n simulating phenomena taking 
place on a much longer time scale. This problem i s not 
merely a matter of ex i s t i n g computers being too s l o w — 
indeed, 1 to 10 picoseconds per second i s about as fast 
as one can comfortably watch an animated display of 
molecular motion— rather i t i s a manifestation of a 
common paradox i n molecular dynamics: concealment of 
the desired information by mountains of ir r e l e v a n t de
t a i l . 

The bulk of t h i s chapter w i l l expound a synthesis 
of molecular dynamics (and Monte Carlo) methods with 
t r a n s i t i o n state theory that combines the former's 
freedom from questionable approximations with the 
l a t t e r ' s a b i l i t y to predict a r b i t r a r i l y infrequent ev
ents, events that would be p r o h i b i t i v e l y expensive to 
simulate d i r e c t l y . However, before beginning t h i s ex
pos i t i o n , a few more philosophical remarks w i l l be made 
on the irony of being able to simulate molecular motion 
accurately on a picosecond time scale, without thereby 
being able to understand the consequences of that mo
ti o n on a 1 second time scale. To exhi b i t the irony i n 
an extreme form, consider a system whose simulation i s 
somewhat beyond the range of present molecular dynamics 
technique: a globular protein (e.g. an enzyme) i n i t s 
normal aqueous environment. An animated movie of t h i s 
system could not be run much faster than 10 picoseconds 
per second (10 psec. i s approximately the l i f e t i m e of a 
hydrogen bond i n water) without having the water mole
cules move too fast for the eye to follow. At t h i s 
rate, a ty p i c a l enzyme-catalyzed reaction would take 
several years to watch, and the spontaneous f o l ding-up 
of the globular protein from an extended polypeptide 
chain would take thousands of years. The c a l c u l a t i o n 
necessary to make the movie would of course take sever
al several orders of magnitude longer on present compu
ters ; but even i f speed of computation were not a prob
lem, watching such a long movie would be. 

I t i s hard to believe that, i n order to see how 
the enzyme works, or how the protein folds up, one must 
view the movie i n i t s e n t i r e t y . I t i s more plausible 
that there are only a few in t e r e s t i n g parts, during 
which the system passes through c r i t i c a l bottlenecks i n 
i t s configuration space; the rest of the time being 
spent exploring large, equilibrated reservoirs between 
the bottlenecks. I f the trajectory c a l c u l a t i o n were 
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repeated many times, s t a r t i n g from s l i g h t l y d i f f e r e n t 
i n i t i a l conditions, one would expect the trajectory to 
pass through the same c r i t i c a l bottlenecks i n the same 
order, but the less constrained portions of the t r a j e c 
tory, between bottlenecks, would probably be d i f f e r e n t 
each time. An adequate understanding of the relaxation 
process as a whole could therefore be gained by gather-

dynamical information on t r a j e c t o r i e s i n the neigh
borhood of each c r i t i c a l bottleneck, and supplementing 
t h i s by a s t a t i s t i c a l characterization (in terms of a 
f i r s t - o r d e r rate constant, or i t s r e c i p r o c a l , a mean 
residence time) of each intervening reservoir. Before 
accepting the hypothesis that only a few parts of the 
movie would be i n t e r e s t i n g enough to c a l l for detailed 
dynamical simulation, l e t us consider the two remaining 
p o s s i b i l i t i e s for a thousand-year movie, v i z . uniform
l y d u l l , and uniformly i n t e r e s t i n g . 

The uniformly d u l l movie would depict a slow, uni
formly-progressive relaxation process, l i k e the d i f f u 
sion of impurities i n t o a homogeneous medium or the 
f a l l of sand through an hourglass. Such a relaxation 
process has no single bottleneck (or, equivalent!y, has 
very many small equal bottlenecks), but i t i s only 
l i k e l y to occur i n a system that possesses some obvious 
structural uniformity (in the cases c i t e d , the uniform
i t y of the medium into which d i f f u s i o n occurs, or the 
uniformity of the sand g r a i n s ) , which would account i n 
a natural way for the uniform rate of progress at d i f 
ferent degrees of completion. More precisely and res-
t r i c t i v e l y , the uniform slow progress can usually be 
measured by one or a few slowly-relaxing, 
•hydrodynamic1 degrees of freedom, whose equations of 
motion can be solved independently of the other degrees 
of freedom. In the hourglass example, the mean height 
of the sand i s such degree of freedom; i t s approximate 
equation of motion can be solved without reference to 
the detailed t r a j e c t o r y , which passes through a new 
bottleneck i n configuration space every time a grain of 
sand f a l l s through the bottleneck i n real space. 

A movie of a such a hydrodynamic relaxation pro
cess has no r e a l l y e x c i t i n g parts, but a l l parts are 
more or less t y p i c a l , and an understanding of the pro
cess as a whole can be gained by viewing a few parts 
(say at the beginning, middle, and end), and interpo
l a t i n g between them by the equations of motion for the 
slow degrees of freedom. The detailed sequence of 
b o t t l e n e c k s — e.g. the order i n which the sand grains 
f e l l — i s not reproducible by t h i s procedure, but 
neither i s i t important. The connection between mole
cular dynamics and hydrodynamics i n uniform f l u i d s i s 

 P
ub

lic
at

io
n 

D
at

e:
 J

un
e 

1,
 1

97
7 

| d
oi

: 1
0.

10
21

/b
k-

19
77

-0
04

6.
ch

00
4

In Algorithms for Chemical Computations; Christoffersen, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1977. 
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of considerable current i n t e r e s t (9), but i t i s p e r i 
pheral to the subject of t h i s review, v i z . r e l a t i v e l y 
f a s t but infrequent events, p a r t i c u l a r l y those occur
r i n g i n s p a t i a l l y nonuniform systems, whose lack of 
symmetry p r a c t i c a l l y guarantees that a few bottlenecks 
w i l l be much harder than a l l the r e s t . 

Undoubtedly there are systems that suffer both 
from bottlenecks and slow modes, e.g. any sizeable 
change i n a the conformation of a protein involves many 
atoms and i s damped by the v i s c o s i t y of the surrounding 
water; thus, even i n the absence of any a c t i v a t i o n bar
r i e r , i t would have a relaxation time several orders of 
magnitude longer than that of a single water molecule. 
However, r e a l l y large d i s p a r i t i e s i n time scale, e.g. 
10 orders of magnitude i n a system of a few thousand 
atoms, cannot r e s u l t from hydrodynamic modes alone, but 
must be due c h i e f l y to bottlenecks. 

The f i n a l p o s s i b i l i t y , a uniformly i n t e r e s t i n g 
movie, would have to depict a process with thousands or 
mi l l i o n s of c r i t i c a l steps occuring i n a d e f i n i t e ord
er, each step necessary to understand the next, as i n 
an i n d u s t r i a l process, the functioning of a d i g i t a l 
computer, or the development of an embryo. Enzymes, 
having been optimized by natural s e l e c t i o n , may be ex
pected to have somewhat complex mechanisms of action, 
perhaps with several equally important c r i t i c a l steps, 
but not with thousands of them. There i s reason to 
believe that processes with thousands of reproducible 
n o n - t r i v i a l steps usually occur only i n systems that 
are held away from thermal equilibrium by an external 
d r i v i n g force. They thus belong to the realm of com
plex behavior i n continuously d i s s i p a t i v e open systems, 
rather than to the realm of relaxation processes i n 
closed systems. 
Transition State Theory and Molecular Dynamics 
The idea of characterizing infrequent events i n terms 
of a bottleneck or saddle point neighborhood i s much 
older than the d i g i t a l computer, and indeed i s the ba
s i s of t r a n s i t i o n state theory (TST), developed i n the 
t h i r t i e s (1) and since then applied to a wide range of 
relaxation phenomena ranging from chemical reactions i n 
gases to d i f f u s i o n i n s o l i d s . Unfortunately, before 
the f e a s i b i l i t y of large scale Monte Carlo and dynamic 
ca l c u l a t i o n s , t r a n s i t i o n state theory could not be de
veloped to the point of y i e l d i n g quantitative predic
tions without making certain s i m p l i f y i n g assumptions 
which usually were not t h e o r e t i c a l l y j u s t i f i e d , a l 
though they often worked well i n practice. Three so-
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mewhat related assumptions were generally made: 
1) that the bottleneck i s an approximately quadratic 

portion of the potential energy surface containing a 
single saddle point ( i . e . a point where the the f i r s t 
d e r i v a t i v e , V U ' °f the potential energy i s zero and 
where i t s second derivative matrix, ^7V U' ^ a s exactly 
one negative eigenvalue). For t h i s (harmonic) approxi
mation to be j u s t i f i e d , the nearly-quadratic portion of 
the potential energy surface should extend at least kT 
above and below the exact saddle point. 
2) that the t y p i c a l t rajectory does not reverse i t s 

d i r e c t i o n while i n the saddle point neighborhood (in 
other words, the transmission c o e f f i c i e n t i s 100 per 
cent). 
3) that an equilibrium d i s t r i b u t i o n of microstates 

prevails i n the saddle point neighborhood, even when 
the system as a whole i s i n a non-equilibrium macros-
tate, with t r a j e c t o r i e s approaching the saddle point 
from one side ('reactant') but not the other 
('product 1). 

By marrying molecular dynamics to t r a n s i t i o n state 
theory, these questionable assumptions can be dispensed 
with, and one can simulate a relaxation process involv
ing bottlenecks rigorously, assuming only 1) c l a s s i c a l 
mechanics, and 2) local equilibrium within the reac-
tant and product zones separately. For s i m p l i c i t y we 
w i l l f i r s t treat a s i t u a t i o n i n which there i s only one 
bottleneck, whose location i s known. Later, we w i l l 
consider processes involving many bottlenecks, and w i l l 
discuss computer-assisted h e u r i s t i c methods for finding 
bottlenecks when t h e i r locations are not known 
a p r i o r i . 

The essential t r i c k for doing dynamical simula
tions of infrequent events, discovered by Keck (10), i s 
to use s t a r t i n g points chosen from an equilibrium d i s 
t r i b u t i o n i n the bottleneck region, and from each of 
these s t a r t i n g points to generate a trajectory by i n t e 
grating Newton1β equations both forward and backward 
i n time; rather than to use s t a r t i n g points i n the 
reactant region and compute t r a j e c t o r i e s forward i n 
time, hoping for them to enter the bottleneck. One 
thus avoids wasting a l o t of time c a l c u l a t i n g t r a j e c t o 
r i e s that do not enter. Furthermore, although the t r a 
j e c t o r i e s are o r i g i n a l l y calculated on the basis of an 
equilibrium d i s t r i b u t i o n i n the bottleneck, t h i s d i s 
t r i b u t i o n can be rigorously corrected, using informa
t i o n provided by the t r a j e c t o r i e s themselves, to re
f l e c t the s i t u a t i o n i n a bottleneck connecting two res
ervoirs not at equilibrium with each other. 

The system i n which the t r a n s i t i o n s are occuring 
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w i l l be assumed to be a closed system consisting of 
Ν = several to several thousand atoms, describable by a 
c l a s s i c a l Hamiltonian 

3N 2 
H = ( Σ Ρ /2m ) + U(q ,q . . .q ), (1) 

i= l i i 1 2 3N 
where q^ denotes the i ' t h atomic cartesian coordi
nate, and mi i t s mass, and where U(q) i s the poten
t i a l energy function discussed e a r l i e r . The system 
w i l l be assumed to have no constants of motion other 
than the energy: l i n e a r momentum, even i f conserved, 
affects the dynamics only i n a t r i v i a l manner; while 
angular momentum i s not conserved i n the presence of 
periodic boundary conditions (these are o r d i n a r i l y used 
i n molecular dynamics work on condensed systems to 
abolish surface e f f e c t s ) . I t i s often convenient to 
define the Hamiltonian i n terras of mass-weighted 
coordinates, c[ <— q/v/m", so that the equilibrium veloc
i t y d i s t r i b u t i o n becomes i s o t r o p i c , and the dynamics i s 
simply that of a p a r t i c l e r o l l i n g on the potential en
ergy surface: q = -VU(q) . 

The Question of Equilibrium i n the Bottleneck. 
This question w i l l be discussed at some length (see 
also Anderson, r e f . 11), because i t has been the source 
of much confusion i n the past. Consider a closed sys
tem whose 6N-dimensional phase space contains two re
gions a r b i t r a r i l y l a b e l led 'reactant 1 and 'product', as 
well as a t h i r d 'bottleneck' region placed so as to 
intersect e s s e n t i a l l y a l l t r a j e c t o r i e s passing between 
the other two regions. 

Figure 1 

A 
(reactant) 

Β 
(bottleneck) 

C 
(product) 

Since Α, Β, and C are regions i n the phase space of a 
single closed system, the t r a n s i t i o n s between A and C 
represent a unimolecular reaction or isomerizatTon, 
rather than a general reaction i n the sense of chemical 
k i n e t i c s . Unlike some unimolecular reactions, (e.g the 
decomposition of diatomic molecules) the molecular dy
namics system of eq. 1 w i l l be assumed to have s u f f i 
c i e n t l y many well-coupled degrees of freedom that tran
s i t i o n s between reactant and product regions occur 
spontaneously, without outside interference. 
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F i r s t l e t us assume that the system has been un
disturbed f o r so long that i t i s i n a macrostate of 
thermal equilibrium. Trajectories w i l l then pass 
through the bottleneck region equally often from l e f t 
to r i g h t and from r i g h t to l e f t , and the p r o b a b i l i t i e s 
of d i f f e r e n t microstates i n the bottleneck region, as 
i n any part of phase space, w i l l be given by the formu
las of equilibrium s t a t i s t i c a l mechanics (e.g. the 
equilibrium microcanonica1 density, 

S(H( E, a) -E) 
Peq(p,q) = — , (2) 

Jdui î(H(£,a)-E) 
for a system whose equations of motion conserve energy 
but not l i n e a r or angular momentum). In the denomina
tor du> represents the 6N dimensional volume element 
(dp -dp · ...dp -dq · dq · ...dq ). 

1 2 3N 1 2 3N 
The equilibrium d i s t r i b u t i o n i n the bottleneck 

region i s a rigorous r e s u l t for any system i n macro
scopic equilibrium and does not depend on how easy or 
d i f f i c u l t the bottleneck i s to enter, or on how quickly 
the t y p i c a l t rajectory passes through. Nevertheless, 
i t has seemed i n t u i t i v e l y implausible to some s o l i d 
state p h y s i c i s t s (12) , who have argued that the t y p i c a l 
atom, i n making a d i f f u s i v e jump, usually approaches 
the saddle point so quickly that the neighboring atoms 
(between which the jumping atom must pass) do not have 
time to relax outward f u l l y , as they would have, had 
the jumping atom been brought to the saddle point slow
l y and allowed to e q u i l i b r a t e there. The error here i s 
i n regarding the jumping atom's approach s o l e l y as a 
cause of the outward r e l a x a t i o n , when i t may equally 
well be a r e s u l t of that r e l a x a t i o n , inasmuch as p r i o r 
outward relaxation of the neighbors makes i t easier for 
the jumping atom to pass through. The jump event i s 
more properly treated as a f l u c t u a t i o n i n a many-body 
system at thermal equilibrium: the jumping atom's pres
ence i n the saddle point neither causes, nor r e s u l t s 
from, but rather i s instantaneously correlated with, a 
relaxation i n the mean positions of a l l other atoms i n 
the system. Similar arguments imply that the v e l o c i t y 
d i s t r i b u t i o n of atoms found i n the saddle point neigh
borhood i s thermal and Maxwellian. Although a jumping 
atom w i l l usually need more-than-average k i n e t i c energy 
to ascend to the saddle point, a l l t h i s excess k i n e t i c 
energy w i l l , on the average, have been converted into 
potential energy during the ascent, only to be recov
ered as k i n e t i c energy during the descent. 
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Now consider a nonequilibrium macrostate i n which 
reactant and product zones are not i n equilibrium with 
each other, but each by i t s e l f i s i n equilibrium. 
S t r i c t l y speaking t h i s condition cannot maintain i t s e l f 
i f there i s any flu x through the b o t t l e n e c k — i n the 
long run global equilibrium w i l l of course be attained, 
while even i n the short run the f l u x w i l l cause depar
tures from local equilibrium, s e l e c t i v e l y depleting 
some microstates i n the reactant zone and enhancing 
some i n the product zone. However, i f both reactant 
and product zones have mean residence times much longer 
than t h e i r internal relaxation times, t h i s s e l e c t i v e 
depletion and enhancement w i l l be n e g l i g i b l e , and the 
approach to global equilibrium w i l l take place without 
a s i g n i f i c a n t deviation from local equilibrium. The 
local equilibrium or 'steady-state* approximation i s 
j u s t i f i e d whenever the so-called bottleneck r e a l l y i s a 
bottleneck between the two regions i t connects, i n the 
sense of being the chief obstacle to t h e i r rapid equi
l i b r a t i o n . I f i t i s not, then the relaxation process 
being studied either lacks a clear-cut bottleneck, or 
else the bottleneck has been i n c o r r e c t l y i d e n t i f i e d and 
the true bottleneck l i e s within the reactant or product 
zone. 

The lack of equilibrium between reactant and pro
duct zones leads to a d i s t i n c t l y nonequilibrium d i s t r i 
bution i n the bottleneck, but fortunately i t i s one 
that can be expressed e a s i l y (11) i n terms of the equi
librium d i s t r i b u t i o n and trajectory information. To do 
t h i s , the equilibrium p r o b a b i l i t y density Peq(p,q) i s 
s p l i t into two nonoverlapping parts, Pa(p,q) and 
Pc(p,q), the former o r i g i n a t i n g from an equilibrium 
d i s t r i b u t i o n i n A, the l a t t e r from an equilibrium d i s 
t r i b u t i o n i n C. 

For each phase point (P/2.) 2 

I f the (unique) tra j e c t o r y through ip,q) has 
been i n A more recently than i t has been i n C, 
set Pa (p,q) =Peq (p,cr) and set Pc(p,g)=0. 

Conversely, i f the trajectory through (P/q) has 
been i n C more recently than i n A, set 
set Pc (p",q) =Peq (p,q) and set Pa (p,q) =0 . 

Since every phase point (except for uninteresting ones 
accessible from neither A nor C) s a t i s f i e s one of the 
two t r a j e c t o r y conditions above and no phase point sa
t i s f i e s both, the two terms add up to the equilibrium 
density; on the other hand, each term separately repre
sents the s i t u a t i o n i n which an equilibrium d i s t r i b u 
t i o n of t r a j e c t o r i e s attacks the bottleneck from one 
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side while no t r a j e c t o r i e s attack from the other side. 
The general intermediate case, where A and C are both 
populated and i n t e r n a l l y at equilibrium but out of 
equilibrium with each other, can be expressed by saying 
that i f a nonequilibrium steady state's p r o b a b i l i t y 
density i s uniformly Xa times the equilibrium value i n 
A and uniformly Xc times the equilibrium value i n C, 
then the r e s u l t i n g density i n the bottleneck region 
w i l l be 
Pneq(p,c£) = Xa'Pa(p,q) +Xc*Pc(p,q). (3) 

Counting the Trajectories. The generation of t r a -
j e c t o r i e s and the estimation of the overall t r a n s i t i o n 
rate are f a c i l i t a t e d by defining an a r b i t r a r y 6N-1 d i 
mensional d i v i d i n g surface S i n the bottleneck re
gion, and counting the t r a j e c t o r i e s as they cross 
through i t . 

Figure 2 

(reactant A ) (product C ) 
The forward t r a n s i t i o n rate constant, i . e . the number 
of t r a n s i t i o n s from A to C per unit time and per 
unit p r o b a b i l i t y i n region A, can be expressed general
l y and rigorously ( i . e . assuming only c l a s s i c a l mechan
ic s and local equilibrium i n A) as 

W = 
/ ά σ Peq(p,gJ . u x(p,cj) * (ux>0) · É (p,gj 

f du> Peq(p,q) 
(4) 

Here Peq, the equilibrium p r o b a b i l i t y density defined 
e a r l i e r , i s integrated (dt*>) over the 6N dimensional 
reactant zone A to obtain the normalizing factor i n 
the denominator. In the numerator, the same density, 
i s integrated (dor) over the 6N-1 dimensional surface 
S, with various weight factors which, l i k e Peq, are 
functions of the coordinates q[ a n c* momenta p. The 
factor UjLÎjDfCj) i s the normal component of the v e l o c i -
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ty (in 6N space) of the unique trajectory that crosses 
the surface S at point (p,cj) . I t i s included because 
the crossing frequency through a surface i s proportion
al to the product of local density and v e l o c i t y ; r e
verse crossings are excluded by the factor (Uj_>0) which 
takes the value 1 or 0 according to the sign of 
u x(p,q). The integral of the f i r s t three factors alone 
thus represents the equilibrium forward crossing f r e 
quency through the d i v i d i n g surface, and i n early forms 
of t r a n s i t i o n state theory t h i s was usually i d e n t i f i e d 
with the forward t r a n s i t i o n rate. In f a c t , because of 
multiple crossings, i t i s only an upper bound on the 
t r a n s i t i o n rate. Multiple crossing t r a j e c t o r i e s have 
been found to be s i g n i f i c a n t i n gas phase chemical 
reactions (13), and i n vacancy d i f f u s i o n i n so l i d s 
(14) . 

To correct for multiple crossings (and, i n c i d e n t a l 
l y for nonequilibrium between reactant and product 
zones) Keck (10) and Anderson (11) introduced a t h i r d , 
trajectory-dependent factor f(£^q) that causes each 
successful forward t r a j e c t o r y ( i . e . o r i g i n a t i n g i n A 
and passing through the bottleneck to C) to be count
ed exactly once, no matter how many times i t crosses 
S; and causes other t r a j e c t o r i e s ( i . e . those that go 
from C to A, from A to A, or from C to C) not to be 
counted at a l l . Many d i f f e r e n t ξ functions w i l l 
achieve t h i s purpose, for example Anderson's: 

f
l i f the (unique) trajectory through (p,c[) 

crosses S an odd number of times, 
of which (p,q) i s the l a s t , 

0 otherwise; 
or Keek's: 

f 1 A i f (Pfq) i s one of the forward crossings 
on a traje c t o r y with k forward 
crossings and k-1 backward crossings, 

otherwise. 
In addition to correcting for multiple crossings, the 
factor corrects for nonequilibrium between reactant and 
product zones, because those parts of S not i n equi
librium with A contribute only t r a j e c t o r i e s for which 
the product (u^O)-^ i s zero. 

I t i s clear for topological reasons that the same 
value of the t r a n s i t i o n rate w i l l be obtained regard
less of where the di v i d i n g surface i s placed i n B, 
provided i t intersects a l l successful t r a j e c t o r i e s . 
Nevertheless, for the sake of better s t a t i s t i c s , the 
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d i v i d i n g surface should be chosen so as to intersect as 
few unsuccessful t r a j e c t o r i e s as possible. S i m i l a r l y , 
although the two f functions have the same mean value, 
Keek's appears preferable because i t has a smaller var
iance. 

For use, eq. 4 may be rewritten i n the form of two 
factors, which require somewhat d i f f e r e n t numerical 
techniques for t h e i r evaluation: 

where <>s denotes averaging over an equilibrium ensem
ble on the surface S. 

The f i r s t or 'probability factor' i s e s s e n t i a l l y a 
r a t i o of p a r t i t i o n functions, and represents the i n t e 
grated equilibrium density of phase points on S per 
phase point i n A. The second or 'trajectory-corrected 
frequency factor' i s the number of successful forward 
t r a j e c t o r i e s per unit time and per unit equilibrium 
density on S. The r a t i o of t h i s to the uncorrected 
frequency factor <uj_ · (u^X)) >s represents the number of 
successful forward t r a j e c t o r i e s per forward crossing. 
Anderson c a l l e d t h i s r a t i o the 'conversion c o e f f i c i e n t ' 
to d i s t i n g u i s h i t from the 'transmission coefficent' of 
t r a d i t i o n a l rate theory (1), which was usually defined 
rather carelessly and given l i t t l e attention, because 
i t could not be computed without tr a j e c t o r y informa
t i o n . 

Usually one deals with a system whose equations of 
motion are invariant under time r e v e r s a l , and the de
f i n i t i o n s of the d i v i d i n g surface and reactant and pro
duct regions involve only coordinates, not momenta. 
Under these conditions (which w i l l henceforth be as
sumed) the factor u^'tu^O) i n eqs. 4 and 5 can be 
replaced by i f l u ^ l , and the frequency factor (and 
conversion c o e f f i c i e n t ) w i l l be the same i n the forward 
and backward d i r e c t i o n s , because every successful f o r 
ward trajectory i s the reverse of an equiprobable suc
cessful backward tra j e c t o r y . One can then use a t h i r d 
form of the ξ function, v i z . 

S 
W = < UI/(U_L>0) · f >s (5) 

1/k i f (£,£) i s any crossing on a t r a j e c 
tory that makes an odd 
number, k, of crossings, 

0 otherwise. ( (6) 
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4. B E N N E T T Molecular Dynamics and Transition State Theory 75 

This function has the least variance of a l l 
I functions, because i t d i s t r i b u t e s each trajectory's 
weight equally among a l l i t s crossings. 

When the the a c t i v a t i o n energy i s smal1 compared 
to the t o t a l k i n e t i c energy, as i t i s i n most systems 
with >100 degrees of freedom, the difference between 
the microcanonical ensemble and the more convenient 
canonical ensemble can usually be neglected. In the 
canonical ensemble, the momentum integrals cancel out 
of eq. 4, making the p r o b a b i l i t y factor a simple r a t i o 
of configurational i n t e g r a l s . Combining t h i s with the 
time-reversal-invariant form of the frequency factor 
and the optimum | function of eq. 6, we get 

Q* 
W = — · < j l u x ( p , a ) !·£(£,£) >s, (7) 

Qa 
where Qa and 0Φ are integrals of exp(-U(q)/kT) over, 
respectively, the 3N dimensional reactant region and 
the 3N-1 dimensional d i v i d i n g surface i n configuration 
space. This exact expression for the t r a n s i t i o n rate 
i s the one that w i l l be used most often i n the remain
der of t h i s paper. 

D e f i n i t i o n of a Successful Transition. I t i s 
clear that the t r a n s i t i o n rate depends on the boundar
ies adopted for the bottleneck region Β, which a t r a 
jectory must traverse to be counted as successful. I f 
Β i s made very narrow, the t r a n s i t i o n rate w i l l be ov
erestimated, because dynamically-correlated multiple 
crossings w i l l be counted as independent t r a n s i t i o n s ; 
on the other hand, i f Β i s enlarged to include a l l of 
configuration space, t r a j e c t o r i e s w i l l never leave Β 
and the t r a n s i t i o n rate w i l l be zero. However, i f the 
assumed bottleneck indeed represents the chief obstacle 
to rapid e q u i l i b r a t i o n between two parts of configura
t i o n space, there w i l l be a range sizes over which the 
t r a n s i t i o n rate i s nearly independent of the d e f i n i t i o n 
of Β. These 'reasonable' d e f i n i t i o n s w i l l make Β small 
enough to exclude most of the equilibrium p r o b a b i l i t y , 
yet large enough so that a trajectory passing through Β 
i n either d i r e c t i o n i s u n l i k e l y to return through Β 
immediately i n the opposite d i r e c t i o n . 

The time of return can i t s e l f be made the c r i t e r 
ion of success, by forgetting about the Β region and 
counting two consecutive crossings of S as independent 
t r a n s i t i o n s i f and only i f they are separated by a time 
in t e r v a l greater than some c h a r a c t e r i s t i c time To, 
e.g. the autocorrelation time of the v e l o c i t y normal to 
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the d i v i d i n g surface. A successful t r a n s i t i o n , then, 
i s a portion of trajectory that crosses S an odd number 
of times, at i n t e r v a l s less than To, preceded and 
followed by crossing-free i n t e r v a l s of at least To. 
This c r i t e r i o n of success emphasizes the fact that un
less the mean time between t r a n s i t i o n s i s long compared 
to other relaxation times of the system, successive 
t r a n s i t i o n s w i l l be correlated, and the t r a n s i t i o n rate 
w i l l be somewhat i l l - d e f i n e d . Such correlated t r a n s i 
t i o n s , representing a breakdown of the random walk hy
pothesis, are s i g n i f i c a n t i n s o l i d state d i f f u s i o n 
(14,15), at high defect jump rates. The correlations 
may be investigated either by simulating the system 
d i r e c t l y , without bottleneck methods, or by continuing 
t r a j e c t o r i e s started i n the bottleneck f a r enough f o r 
ward and backward i n time to include any other t r a n s i 
tions correlated with the o r i g i n a l one. 

Sampling the Equilibrium D i s t r i b u t i o n i n the Bot
tleneck. In order to generate representative t r a j e c t o 
r i e s and evaluate the corrected frequency fa c t o r , one 
needs a sample of the equilibrium d i s t r i b u t i o n 
Peq(p,g) on the surface S, where the t o t a l equilibrium 
p r o b a b i l i t y i s very low. For very simple systems (13) 
t h i s sample can be generated a n a l y t i c a l l y , but for an
harmonic polyatomic systems i t can only be obtained 
numerically, by doing a molecular dynamics or Monte 
Carlo machine experiment designed to sample the e q u i l i 
brium d i s t r i b u t i o n on S c o r r e c t l y , while greatly en
hancing the system's p r o b a b i l i t y of being on or near 
S. This may be accomplished by a Hamiltonian of the 
form 

One can do dynamics under t h i s Hamiltonian by making 
the trajectory undergo an e l a s t i c r e f l e c t i o n whenever 
i t s t r i k e s one of the i n f i n i t e b a r r i e r s (14). Under 
H*, the d i f f e r e n t parts of S would be v i s i t e d with the 
same r e l a t i v e frequency as Tn an unconstrained e q u i l i 
brium machine experiment, but with a much greater abso
lute frequency; thereby allowing a representative sam
ple of, say, 100 representative points on Ŝ  to be as
sembled i n a reasonable amount of computer time. I f 
the equilibrium d i s t r i b u t i o n i s canonical the momentum 
d i s t r i b u t i o n w i l l be Maxwel1ian and independent of 
coordinates; hence, representative points (Pf£ï) c a n 

be generated by taking q from an equilibrium Monte 

H(P'S.) *f (9.) ^ s within a small 
distance δ of Ŝ , 

+00 otherwise. (8)  P
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4. B E N N E T T Molecular Dynamics and Transition State Theory 

Carlo run constrained to make moves on the 3N-1 dimen
sional d i v i d i n g surface i n configuration space, and 
supplying momenta from the appropriate multidimensional 
Maxwell d i s t r i b u t i o n . A l t e r n a t i v e l y , the d i v i d i n g sur
face may be sampled by an unconstrained Monte Carlo run 
that i s encouraged to remain near £ by adding to the 
potential a holding term that i s constant on S but 
increases r a p i d l y as c[ moves away from S. 

A well-chosen d i v i d i n g surface should s a t i s f y 
these three c r i t e r i a : 1) i t s conversion c o e f f i c i e n t 
should not be too small, 2) i t s d e f i n i t i o n should be 
simple enough to be implemented as a constraint or 
holding term i n a MC or MD run, and 3) the autocorrela
t i o n time of t h i s run should not be too large. I f the 
bottleneck technique i s to represent any saving over 
stra i g h t simulation, the t o t a l machine time expended 
per statistically-independent successful t r a n s i t i o n 
(including time to generate a statistically-independent 
s t a r t i n g point on S, time to compute the trajectory 
through i t , and overhead from unsuccessful t r a j e c t o 
ries) must be less than the mean time between spontane
ous t r a n s i t i o n s i n a straightforward non-bottleneck 
simulation. O r d i n a r i l y , i f the bottleneck i s a single 
compact region i n configuration space, i t w i l l not be 
d i f f i c u l t to fi n d a di v i d i n g surface that s a t i s f i e s a l l 
three c r i t e r i a . On the other hand, i f the bottleneck 
i s broad and d i f f u s e , containing many p a r a l l e l i n 
dependent channels, the only surfaces that s a t i s f y the 
f i r s t c r i t e r i o n may be so complicated and hard to de
fine that they f a i l the second and t h i r d (In t h i s con
nection i t should be noted that the 'continental 
divide' or 'watershed' between two r e s e r v o i r s , which 
might appear an ideal d i v i d i n g surface because of i t s 
high conversion c o e f f i c i e n t , i s not usable i n practice 
because i t i s defined by a nonlocal property of the 
potential energy surface). F i g . Ί suggests a broad, 
dif f u s e bottleneck whose watershed (dotted line) i s so 
broad and so contorted that no simple approximation to 
i t can have a good conversion c o e f f i c i e n t . 
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I t i s not known whether such pathological bottlenecks 
occur i n practice. 

One important kind of broad bottleneck, probably 
not pathological, i s found i n chemical reactions i n 
l i q u i d solutions; where most of the solvent molecules 
are geometrically remote from, and therefore only weak
ly coupled to, the atoms immediately involved i n the 
t r a n s i t i o n . The remote atoms exert only a mild per
turbing e f f e c t on the t r a n s i t i o n , and need not be i n 
any one configuration for the t r a n s i t i o n to occur. In 
other words, i f a number of t r a j e c t o r i e s for successful 
t r a n s i t i o n s were compared, a l l would pass through a 
single small bottleneck i n the subspace of important 
nearby atoms, but the same t r a j e c t o r i e s , when projected 
onto the subspace of remote atoms, would not be concen
trated i n any one region. In the f u l l configuration 
space, the bottleneck w i l l therefore appear broad and 
d i f f u s e i n the directions of the weakly-coupled degrees 
of freedom. 

The obvious approach to t h i s problem i s to look 
for a d i v i d i n g surface i n the subspace of strongly 
coupled ' p a r t i c i p a n t 1 degrees of freedom, for which the 
bottleneck i s well l o c a l i z e d . In the directions of the 
weakly-coupled 'bystander' degrees of freedom, the wat
ershed i s broad and d i f f u s e ; but one can reasonably 
hope t h a t — p r e c i s e l y because of t h i s weak c o u p l i n g — i t 
i s not highly contorted i n these d i r e c t i o n s , and that 
therefore the surface S w i l l be a good approximation 
to i t . Of course i t may not always be easy i d e n t i f y 
the participants and bystanders c o r r e c t l y . 

The problem of separating the participants from 
the bystanders has come up i n attempts to simulate d i s 
sociation of a pair of oppositely charged ions i n water 
(16). I f the d i v i d i n g surface i s taken to be a surface 
of constant distance between the two ions, the t r a j e c 
tory t y p i c a l l y recrosses t h i s surface many times with
out making noticeable progress toward d i s s o c i a t i o n or 
association. This appears to be because of a con
s t r a i n i n g cage of water molecules around the ions, 
which must rearrange i t s e l f before the ions can associ
ate or dissociate. Nevertheless, spontaneous d i s s o c i a 
tions occasionally occur rather quickly. This suggests 
that i f the d i v i d i n g surface were made to depend i n the 
proper way on the shape of the cage, t r a n s i t i o n s 
through i t would be much less indecisive. I t i s not 
known how many water molecules must be treated as par
t i c i p a n t s to achieve t h i s r e s u l t . 

Calculating the P r o b a b i l i t y Factor. The t r a n s i 
tions generated by continuing t r a j e c t o r i e s forward and 
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4. B E N N E T T Molecular Dynamics and Transition State Theory 79 

backward i n time from s t a r t i n g points on S w i l l be re
presentative of spontaneous t r a n s i t i o n s through the 
bottleneck, but the absolute t r a n s i t i o n rate w i l l not 
yet be known, because the f i r s t factor of eqs. 5 and 7 
i s not known, and cannot be computed from information 
coll e c t e d i n the bottleneck region alone. This factor 
i s the Boltzmann exponential of the free energy d i f f e r 
ence (or for a microcanonical ensemble, entropy d i f f e r 
ence) between a system constrained to the reactant re
gion and a system constrained to the neighborhood of 
the d i v i d i n g surface. For very simple or harmonic sys
tems the free energy difference can be calculated ana
l y t i c a l l y , but i n general, i t can only be found by 
special Monte Carlo or molecular dynamics methods. 
These methods resemble the calorimetric methods by 
which free energy differences are determined i n the 
laboratory, i n that they depend on measuring the work 
necessary to conduct the system along a reversible path 
between the two macrostates, or between each of them 
and some reference macrostate of known free energy. 
Laboratory calorimetry measures free energy as a func
t i o n of independent state variables l i k e temperature. 
Machine experiments are less l i m i t e d : they can measure 
the free energy change attending the introduction of an 
arb i t r a r y constraint or perturbing term i n the Hamilto-
nian. In the present case, for example, one could mea
sure the reversible work required to squeeze the system 
from the reactant zone into the neighborhood of S by 
integrating the pressure of c o l l i s i o n s against one of 
the constraining barriers of Η*, as i t i s moved slowly 

A l t e r n a t i v e l y , one could measure the reversible work 
along a path between the bottleneck and one reference 
system (e.g. a quadratic saddle p o i n t ) , and along 
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another path between the reactant zone and a second 
reference system (e.g. a quadratic minimum), and sub
t r a c t these. Computer calorimetry i s easiest to per
form i n the canonical ensemble, where any derivative of 
the free energy i s equal to the canonical average of 
the same derivative of the Hamiltonian, measurable i n 
p r i n c i p l e by a Monte Carlo run: 
a(A/kT)/dX = < a(H/kT)/ax > (9) 

Here A i s the Helmholtz free energy, λ i s an a r b i 
t r a r y parameter of the Hamiltonian, and <> denotes a 
canonical average. For more information about 
'computer calorimetry' see r e f s . 17, 18, and 19. 

Relation of Exact TST to the Harmonic Approxima
t i o n . In the canonical ensemble, the most f a m i l i a r TST 
expression for the rate constant i s probably 

kT ΖΦ 
W = — · Κ , (10) 

h Za 
where Za and Ζφ are dimensionless quantum or c l a s s i 
cal p a r t i t i o n functions of the Α-constrained and 
S-constrained systems, calculated with respect to the 
same energy o r i g i n , and χ i s a transmission c o e f f i 
c ient. This equation i s exact and equivalent to eq. 7 
i f the p a r t i t i o n functions are computed c l a s s i c a l l y , 
and i f Κ i s taken to be the conversion c o e f f i c i e n t , 

<|ux(p,^) I - |(p,q) >s 
Κ = Ç = - , (11) 

<|ux(p,q)|>s 
but, as w i l l be seen below, i t i s not a good quantum 
mechanical formula. Eq. 10 i s most frequently used i n 
the harmonic approximation, with the d i v i d i n g surface S 
being defined as the hyperplane perpendicular (in 
mass-weighted configuration space) to the unstable nor
mal mode at the saddle point. This choice makes the 
conversion c o e f f i c i e n t equal to unity because (in the 
harmonic approximation) al 1 normal modes move indepen
dently; therefore a trajectory that crosses t h i s hyper
plane with pos i t i v e v e l o c i t y i n the unstable mode can
not be driven back by any e x c i t a t i o n of the other 
modes. 

The p a r t i t i o n functions Ζφ and Za are also e a s i 
l y evaluated i n the harmonic approximation from pro
ducts of the stable normal mode frequencies at the sad-
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4. B E N N E T T Molecular Dynamics and Transition State Theory 81 

die point and minimum, respectively. One thus obtains 
a formula expressing the t r a n s i t i o n rate i n terms of 
local properties at two special points of the potential 
energy s u r f a c e — the minimum of the reactant zone, and 
the saddle point i n the bottleneck: 

3N 
1 JL mil mm 

W = . exp( -(Usp-Umin) / kT ) , (12) 3N-1 
sp 

where ΖΛηίη, and Z^sp denote the stable normal mode 
frequencies, and Umin and Usp denote the potential 
energy, at the minimum and saddle point, respectively. 
The system i s assumed to have no tran s i a t i o n a l or rota
t i o n a l degrees of freedom. 

This t r a d i t i o n a l , and s t i l l very u s e f u l , form of 
tr a n s i t i o n state theory i s v a l i d whenever quantum ef
fects are ne g l i g i b l e and the potential energy surface 
i s quadratic for a v e r t i c a l distance of several kT 
above and below the saddle point and minimum. Aside 
from assuring the accuracy of the harmonic p a r t i t i o n 
functions, the l a t t e r condition j u s t i f i e s s e t t i n g 
£ = 1 by assuring that t r a j e c t o r i e s crossing the sad
dle point hyperplane w i l l not be re f l e c t e d back u n t i l 
they have f a l l e n several kT below the saddle point 
energy. In practice, although i t i s hard to prove 
(20) , t h i s makes multiple crossings very u n l i k e l y 
(21) . 

Much of the power of eq. 12 comes from the e x i s 
tence of powerful, locally-convergent methods for f i n d 
ing energy minima and saddle points, and methods for 
evaluating products of normal mode frequencies. De
pending on the number of degrees of freedom, variable 
metric (22) minimizers l i k e Harwell Subroutine VA13A 
or conjugate-gradient (23) minimizers l i k e VA14A con
verge to the local energy minimum much faster than the 
obvious method of damped molecular dynamics. Saddle 
points can be found (24) s i m i l a r l y by minimizing the 
squared gradient IVUl 2* of the energy (the s t a r t i n g 
point for t h i s minimization must be f a i r l y close to the 
saddle point, otherwise i t w i l l converge to some other 
local minimum of l V u | 2 , such as an energy minimum 
or maximum). Once the saddle point has been found, 
e x i s t i n g routines, taking advantage of the sparseness 
of V V u for large n, are s u f f i c i e n t to extract the 
unstable mode at the saddle point and compute the pro-
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duct of stable mode frequencies ( e s s e n t i a l l y the deter
minant o f V V U ) even for systems with several hundred 
atoms. 

Even when the harmonic approximation i s not quan
t i t a t i v e l y j u s t i f i e d i t provides a convenient s t a r t i n g 
point for exact treatments. Thus, even i f the poten
t i a l energy surface i s anharmonic i n the bottleneck, i t 
i s often smooth enough for there to be a p r i n c i p a l sad
dle point that can be found by minimizing I V U l 2 . 
The harmonic hyperplane through t h i s saddle point often 
makes a good d i v i d i n g suface, through which most cross
ings lead to succeed. S i m i l a r l y , the harmonic configu-
rat i o n a l integral on the hyperplane i s a good s t a r t i n g 
point for a calorimetric Monte Carlo determination of 
the exact configurational integral on the same hyper
plane. I t may be necessary to r e s t r i c t the hyperplane 
l a t e r a l l y , to avoid i r r e l e v a n t portions of i t that may 
extend beyond the bottleneck region. 

The single-occupancy constraints mentioned on page 90 
of r e f . 14 are an example of such l a t e r a l r e s t r i c 
tion) . 

In systems whose bottlenecks are d i f f u s e because 
of weakly-coupled 'bystander 1 degrees of freedom, i t 
may be useful to look for a saddle point and harmonic 
hyperplane i n the subspace of strongly coupled 
•participant' degrees of freedom, e.g. by minimizing 
I V U l 2 , with respect to the participants while the by
standers are held fixed i n some typ i c a l equilibrium 
positions. In general, minimum and saddle-point seek
ing routines w i l l be useful whenever the potential en
ergy surface (or i t s i n t e r s e c t i o n with the subspace of 
participants) i s smooth—i.e. free of numerous small 
wrinkles and bumps of height kT or l e s s . When such 
roughness i s absent, the t y p i c a l bottleneck w i l l not 
contain many saddle points. 
Quantum Corrections. The obvious way to introduce 
quantum corrections i n eq. 10 would be to interpret Za 
and ΖΦ as quantum p a r t i t i o n functions; however, t h i s 
neglects tunneling (Ζφ, being the p a r t i t i o n function of 
a system constrained to the top of the a c t i v a t i o n bar-

hyperplane 

Figure 5 
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4. B E N N E T T Molecular Dynamics and Transition State Theory 83 

r i e r , knows nothing about the barr i e r ' s thickness). In 
the harmonic approximation tunneling can be included as 
a 1-dimensional parabolic b a r r i e r correction, which has 
the same magnitude (but opposite sign) as the 
lowest-order quantum correction to the p a r t i t i o n func
t i o n of a parabolic well of the same curvature (25, 
26). This means that, i n the harmonic approximation 
and to lowest order i n h , the c l a s s i c a l t r a n s i t i o n 
rate i s m u l t i p l i e d by a factor depending only on the 
sums of squares of the normal mode frequencies at the 
saddle point and minimum: 

1 /h \2[ 3N 3N 1 W quantum 
= 1 + 

W cl a s s . 24 VkT/ L ^ "min ^ "sp 
The unstable mode at the saddle point has an imaginary 
frequency, and contributes negatively to the second 
sum, r a i s i n g the t r a n s i t i o n rate. When t h i s correction 
i s applied to eq. 13, one s t i l l has an expression for 
the rate i n terms of purely local properties at the 
saddle point and minimum. The size of t h i s rather 
readily-calculated lowest-order correction can serve as 
a guide to whether more sophisticated quantum correc
tions are necessary. 

The conditions for v a l i d i t y of the harmonic ap
proximation i n eq. 13 ( i . e . that the potential be quad-
r a t i c within a few de Brogue wavelengths h//27rmkT i n 
a l l directions from the saddlp point) are somewhat op
posed to i t s conditions of v a l i d i t y i n eq. 12 ( i . e . 
that the potential be quadratic within a few kT above 
and below the saddle p o i n t ) , and for some chemical 
reactions, p a r t i c u l a r l y those involving hydrogen, the 
harmonic approximation i s not j u s t i f i e d quantum mechan
i c a l l y i n the temperature range of int e r e s t (27) even 
though i t would be c l a s s i c a l l y (21). For these reac
t i o n s , more sophisticated 1-dimensional tunneling cor
rections to eq. 10 usually also f a i l , and i t becomes 
necessary to use a method that does not assume separa
b i l i t y of the potential i n the saddle point neighbor
hood . 

Such a method has recently been developed by M i l 
l e r , et. a_K (28). I t uses short lengths of c l a s s i c a l 
t r a j e c t o r y , calculated on an upside-down potential en
ergy surface, to obtain a nonlocal correction to the 
c l a s s i c a l (canonical) equilibrium p r o b a b i l i t y density 
Peq(p,c[) at each point; then uses t h i s corrected den
s i t y to evaluate the rate constant v i a eq. 4. The 
method appears to handle the anharmonic tunneling i n 
the reactions H+HH and D+HH f a i r l y well (28), and can 

 P
ub

lic
at

io
n 

D
at

e:
 J

un
e 

1,
 1

97
7 

| d
oi

: 1
0.

10
21

/b
k-

19
77

-0
04

6.
ch

00
4

In Algorithms for Chemical Computations; Christoffersen, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1977. 



84 ALGORITHMS FOR C H E M I C A L COMPUTATIONS 

be applied economically to systems with a r b i t r a r i l y 
many degrees of freedom. 

Another quantum problem, the wide spacing of v i b 
r a t i o n a l energy levels compared to kT, has caused trou
ble i n applying bottlneck methods to simple gas phase 
reactions (29) , making them sometimes less accurate 
than ' q u a s i c l a s s i c a l ' trajectory calculations i n which 
t r a j c e t o r i e s are begun i n the reactant zone with quan
ti z e d v i b r a t i o n a l energies. This problem should be 
much less severe i n polyatomic systems, because of the 
closer spacing of energy l e v e l s . 
Systems with Many Bottlenecks. 
So far we have considered a system with two reservoirs 
separated by one bottleneck; i n general a polyatomic 
system w i l l have many reservoirs i n i t s configuration 
space, and the location of the c r i t i c a l bottleneck or 
bottlenecks w i l l be unknown. Here we w i l 1 f i r s t d i s 
tinguish c r i t i c a l and r a t e - l i m i t i n g bottlenecks from 
less important ones, and then discuss several more or 
less h e u r i s t i c methods for for finding bottlenecks. 

D e f i n i t i o n of C r i t i c a l and Rate-Limiting B o t t l e 
necks" The hypothesis of local equilibrium within the 
reservoirs means that the set of t r a n s i t i o n s from res
ervoir to reservoir can be described as a Markov pro
cess without memory, with the t r a n s i t i o n p r o b a b i l i t i e s 
given by eq. 4. Assuming the canonical ensemble and 
microscopic r e v e r s i b i l i t y , the rate constant Wji, for 
tr a n s i t i o n s from reservoir i to reservoir j can be 
written 

V kT / 
Wji = exp - ( J (14) 

where 
A i = -kT In Qi (15) 

i s the free energy of reservoir i , and 
B i j = B j i = -kT In (0Φ'<γ |ux(p,q) l-|(p,q)>s) (16) 

i s a symmetric 'free energy' of the bottleneck, with 
ζ)φ and < >s being the configurational integral and 
equilibrium expectation on the di v i d i n g surface between 
reservoirs i and j (equations 15 and 16 f i x the o r i 
gin of the free energy scale by defining the A's and 
B's microscopically i n terms of configurational integ-
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4. B E N N E T T Molecular Dynamics and Transition State Theory 85 

r a l s ; however a consistent set of A's and B's could be 
defined macroscopically from the Wij, by a r b i t r a r i l y 
s e tting one of the A's to zero and solving eq. 14 re
cursively for the B's and the other A's). The system 
of reservoirs and bottlenecks can be represented on an 
'activation energy diagram' with valley-heights given 
by the A's and peak-heights given by the B's. 

Microscopic r e v e r s i b i l i t y of the equations of mo
ti o n i s important— without i t the B i j would not be 
symmetric, and the r e l a t i v e occupation p r o b a b i l i t i e s of 
reservoirs i and j i n the long-time l i m i t , here given 
by Pi/Pj = Wij/Wji = exp((Aj-Ai)/kT) , could no 
longer be expressed i n terms of local properties of the 
two reservoirs alone, but would depend on a l l paths 
connecting them. 

The abscissa i n a c t i v a t i o n energy diagrams i s a l 
ways somewhat a r b i t r a r y ; the ordinate, although i t can
not be assigned a d e f i n i t e meaning i n the general chem
i c a l - k i n e t i c s i t u a t i o n of coupled reactions of d i f f e r 
ing order (30) , has the exact meaning given i n eq. 14 
when the t r a n s i t i o n s are defined, as they are here, by 
a microscopically reversible set of f i r s t order rate 
constants. I f there are many interconnecting reser
v o i r s , the peak and v a l l e y representation becomes i n 
convenient, and the system i s better represented as an 
undirected graph whose vertices are the reservoirs and 
whose edges are the bottlenecks. 

Since free energies tend to be large compared to 
kT, i t i s reasonable to assume that no two reservoirs 
have the same free energy to within kT, and that no two 
bottlenecks do either. Under these conditions, e x i t 
from any reservoir i s overwhelmingly l i k e l y to occur 
through the lowest bottleneck leading out, and given 
any two reservoirs χ and y , there i s a well-defined 
set of reservoirs and bottlenecks which the system w i l l 
probably v i s i t on i t s way from χ to y. This set con
s i s t s simply of a l l the places that would get wet i f 
water were poured into χ u n t i l i t began running into 
y (cf. f i g . 7). 

Figure β 
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10 Figure 7 

0 

5 

Y Y 
In f i g . 1, the wet set consists of a l l the reservoirs 
except i , and a l l the bottlenecks except j i and i y . 
The reservoir y i s shown twice to avoid having to 
superimpose v i s u a l l y the two p a r a l l e l paths (x-k-l-y) 
and ( x - j - i - y ) that lead from χ to y. 

The hydrological construction leads to a descend
ing sequence of lakes, each comprising a set of elemen
tary reservoirs that reach a common local equilibrium 
and look from the outside l i k e a single reservoir. The 
mean residence time for a lake i s the pos i t i v e exponen
t i a l of i t s depth (the depth of a compound lake i s sim
ply the depth of i t s deepest part, compared to which 
a l l other parts are n e g l i g i b l e , because of the rule 
that the A 1 s t y p i c a l l y d i f f e r by more than kT). Of 
the bottlenecks that are v i s i t e d , the submerged ones 
l i k e x j and k l are t y p i c a l l y v i s i t e d many times, 
and have hardly any influence on the mean time required 
to get from χ to y. The c r i t i c a l bottlenecks are 
ones l i k e xk and l y that stand at the spillways of 
lakes. The system t y p i c a l l y passes through each c r i t i 
cal bottleneck exactly once. One of the c r i t i c a l bott
lenecks, the one with the deepest lake behind i t , i s 
rate-1 i m i t i n g : most of the time i s spent waiting i n 
that 1ake. 

(It i s sometimes wrongly supposed that the highest 
bottleneck, here xk, i s r a t e - l i m i t i n g ; i n fact 
bottleneck l y i s , because i t s lake i s deeper than 
that behind xk. The highest bottleneck i s thus 
'path-determining' without necessarily being r a t e - l i m 
i t i n g . The complicated r e l a t i o n among rates and bott
lenecks i s shown by the fact that i f bottleneck xk 
were rais e d , so that the jx lake overflowed to the 
l e f t instead of to the r i g h t , the mean time to pass 
from χ to y would a c t u a l l y be decreased, because the 
deepest lake would have a depth of four instead of 
five.) 
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Finding the Bottlenecks. In order to carry out 
the hydrological construction, one must be able, given 
a reservoir i and a l i s t of the η lowest b o t t l e 
necks leading out of i t , to f i n d the next lowest, i t s 
t r a n s i t i o n rate Wji and the new reservoir j that i t 
leads to. A straightforward MD or MC simulation would 
eventually f i n d a l l the relevant bottlenecks and reser
v o i r s , but only at the cost of waiting thousands of 
years i n the deep lakes, which i s precisely what we are 
t r y i n g to avoid. There are several ways of getting a 
polyatomic system to escape from one local minimum or 
reservoir into another; but unfortunately none of them 
can be trusted to escape v i a the bottleneck of lowest 
free energy, as i s required for the hydrological con
s t r u c t i o n . Therefore they must be used rather conser
v a t i v e l y , i n an attempt to gradually discover and f i l l 
out the unknown graph of reservoirs and t r a n s i t i o n 
rates, without missing any important bottleneck. 

Escape methods are most powerful when used i n con
nection with s t a t i c energy minimization and 
saddle-point finding routines, i n an e f f o r t to cata
logue a l l the relevant saddle points and minima on the 
potential energy surface. This approach should be used 
whenever the potential energy surface i s smooth on a 
scale of kT, so that the t y p i c a l b a r r i e r height bet
ween adjacent local minima i s high enough to j u s t i f y 
t r e a t i n g each local minimum as a separate reservoir and 
each saddle point as a separate bottleneck. The main 
s t a t i c methods of escape are 1) systematic search, 2) 
i n t u i t i o n , 3) normal mode thermalization, and 4) 
•pushing 1. 

1) Systematic search of the neighborhood. This i s 
p r a c t i c a l only i f the search i s conducted i n a subspace 
of low dimensionality, because the number of mesh 
points required grows exponentially with the dimension
a l i t y . I t i s usually advisable, at each mesh point, to 
l o c a l l y minimize the energy with respect to a l l the 
degrees of freedom not being searched. This i s c a l l e d 
'adiabatic mapping'. A systematic search with s u f f i 
c i e n t l y f i n e mesh i n a l l relevant degrees of freedom 
w i l l indeed locate a l l saddle points and minima i n a 
given neighborhood, but i t i s usually p r o h i b i t i v e l y 
expensive. Methods that do not search everywhere are 
i n p r i n c i p l e unreliable because i t i s possible for a 
saddle point or minimum on the potential energy surface 
to be so sharply l o c a l i z e d that i t i s undetectable a 
short distance away. (This may seem to contradict the 
notion that since every saddle point has a unique 1-di
mensional g u l l y or steepest-descent path connecting i t 
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to each of two minima, i t ought to be possible to f o l 
low the g u l l i e s from minimum to saddle point to minimum 
a l l over the potential energy surface. Unfortunately, 
neither these g u l l i e s nor the 3N-1 dimensional wat
ersheds between adjacent minima are loc a l l y - d e f i n a b l e 
properties of the potential energy surface). 

2) Intution: considerations of symmetry and common 
sense (aided perhaps by model building) often make the 
approximate locations of the relevant minima and saddle 
points obvious. 

3) L e v i t t and Warshel (31,32) have used an method 
c a l l e d 'normal mode thermalization' to simulate s t a t i 
c a l l y the ef f e c t of heating to a temperature above the 
ba r r i e r height between adjacent minima. Starting at a 
one local minimum, the system i s displaced along each 
normal mode by an amount that would correspond to kT 
energy r i s e on the local quadratic approximation to the 
potential energy surface; however, the 'temperature' 
used i s so high that on the real potential energy sur
face the system i s displaced out of i t s o r i g i n a l wat
ershed, and subsequent energy minimization leads to a 
new local minimum, from which the whole process can be 
repeated. Like e x p l i c i t heating, t h i s method preferen
t i a l l y displaces the system i n the easy d i r e c t i o n s — 
i . e . along the softer normal modes— which are less 
l i k e l y to produce immediate atom-atom overlaps. 

4) 'Pushing'. This consists minimizing the energy 
of a system i n which the o r i g i n a l minimum has been de
s t a b i l i z e d by an a r t i f i c i a l perturbing term i n the po
t e n t i a l energy. Such pushing potentials have been used 
i n energy minimization studies on proteins by Gibson 
and Scheraga (33) and by L e v i t t (32), and are quite 
s i m i l a r i n s p i r i t to the methods used by Torrie and 
Valleau (19) to push Monte Carlo systems into desired 
regions of configuration space. 

In the case of energy minimization, the goal of 
the added term should be to make what was a local mini
mum f l a t , or s l i g h t l y convex, thus causing the system 
to r o l l away to another minimum. The obvious term to 
do t h i s i s a paraboloidal mound complementary i n shape 
to the harmonic neighborhood of the local minimum: 
U'(q) = U(q) +Upush(q), where 
Upush(q) = - (q-qmin)-VVU (qmin) · (q-qmin) , (17) 

with qmin denoting the coordinates of the minimum. 
One may also define a s p h e r i c a l l y symmetric pushing 
p o t e n t i a l , 
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4. B E N N E T T Molecular Dynamics and Transition State Theory 89 

Upush(q) = -const I(q-qmin)I . (18) 

The p o t e n t i a l of eq. 17 pushes the system away from the 
o r i g i n a l minimum i n the d i r e c t i o n s of negative devia
t i o n from harmonicity. The s p h e r i c a l l y symmetric po
t e n t i a l of eq. 18 pushes the system away p r e f e r e n t i a l l y 
along the d i r e c t i o n s of low curvature. The pushing 
p o t e n t i a l s used by L e v i t t (32) were of the symmetric 
type and incorporated a smooth c u t o f f at a range of 
several atomic diameters; t h i s i s avoids having the 
pushing p o t e n t i a l dominate the energy at large d i s 
tance, s e r i o u s l y d i s t o r t i n g any new minimum the system 
escapes i n t o . More r e c e n t l y (34) L e v i t t has used un-
symmetrical pushing p o t e n t i a l s . 

Since pushing p o t e n t i a l s are not guaranteed always 
to escape v i a the lowest saddle point, i t would be wise 
to use them s y s t e m a t i c a l l y i n an e f f o r t to f i n d a l l the 
easy escapes from the given i n i t i a l minimum. This can 
be done by repeating the escape minimization several 
times, each time adding to the p o t e n t i a l a short-ranged 
r e p u l s i v e term placed so as to obstruct the pervious 
escape route. 

Having escaped from one l o c a l minimum to an adja
cent one, the next task i s to f i n d the saddle point, 
choose a good d i v i d i n g surface and c a l c u l a t e the t r a n 
s i t i o n p r o b a b i l i t i e s Wij and Wji. If escape was ac
hieved by pushing, the escape path t y p i c a l l y passes 
through the bottleneck region, and the highest point 
( i . e . the point having highest unperturbed energy) on 
t h i s path i s often close enough to the saddle point to 
serve as a s t a r t i n g point f o r a l o c a l l y convergent min
imization of I Vu V1 , to f i n d the saddle point. Once 
the saddle point has been found, the unstable mode and 
perpendicular hyperplane may be constructed i n the usu
al manner. 

I f no escape path i s a v a i l a b l e (e.g. i f the second 
minimum were known a p r i o r i by reasons of symmetry or 
i f i t were found by a systematic search), an escape 
path can be generated by the 'push-pull 1 method. This 
i s l i k e pushing, except that i t supplements the pushing 
p o t e n t i a l i n the minimum one wishes to leave with an 
a t t r a c t i v e ' p u l l i n g ' p o t e n t i a l i n the minimum one wish
es to enter. The strengths and ranges of these poten
t i a l s are gradually increased u n t i l the desired t r a n s i 
t i o n occurs. Tests of the push-pull method (35) on 
c h i r a l i t y reversal of a 10-atom model polymer showed 
i t superior to the common method of one-dimensional 
constrained minimization, which d i d not come close 
enough to the saddle point to begin a convergent minim
i z a t i o n of the squared gradient. The p i t f a l l s of sad-
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die-point finding methods based on constrained minimi
zation have been noted by Mclver and Komornicki (24) 
and Dewar and Kirschner (36). 

When the potential energy surface i s rough on the 
scale of kT, so that local minima are very numerous and 
separated by bar r i e r s of height kT or l e s s , energy 
minimization methods are not very h e l p f u l , and i t be
comes necessary to use escape methods that w i l l enable 
a finite-temperature MC or MD system to escape from a 
reservoir containing many local minima, through a bot
tleneck perhaps containing many saddle points. Aside 
from i n t u i t i o n , there are two basic methods: 1) heat
ing, and 2) pushing. 

1) Heating—a MC or MD system can always be induced 
to leave a r e s t r i c t e d region i n configuration space by 
r a i s i n g i t s temperature or equivalent!y by a r b i t r a r i l y 
making the atoms smaller or softer. Heating has the 
disadvantage of favoring escape v i a a wide bottleneck 
regardless of i t s height on the potential energy sur
face; t h i s may not be the bottleneck having lowest free 
energy at the temperature of i n t e r e s t . 

2) Pushing can be best be applied to a MC and MD 
system i f one has i n mind a reaction coordinate, 
r(q) , i . e . some function of the coordinates q that, 
because i t takes on a rather l i m i t e d range of values, 
suggests that the system i s trapped i n a rather l i m i t e d 
part of configuration space. A Monte Carlo run under 
the unperturbed potential U would y i e l d a f a i r l y nar
row d i s t r i b u t i o n of values of r , representable as a 
histogram, h ( r ) : 

Mr) 

r= 10 

Figure 8 

Suppose one i s interested (as Torrie and V a i l eau were) 
i n the equilibrium p r o b a b i l i t y of an r value, say 
r=30, outside the observed range; a l t e r n a t i v e l y , one 
may suspect that p ( r ) , the true equilibrium d i s t r i b u 
t i o n of r , i s bimodal, with another peak around 
r=40, but that a bottleneck around r=30 i s prevent
ing t h i s peak from being populated. 

In order to push the local equilibrium ensemble 
out of the range r=15-25, i t s u f f i c e s to perform a 
Monte Carlo run under the potential 
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U 1 = U + Upush, with 
Upush(q) = +kT In f ( r ( q ) ) , (19) 

where f ( r ) i s an always-positive function chosen to 
approximate the histogram h(r) i n the range 15-25 
where data have been collected and to be a reasonable 
extrapolation of h(r) i n the region where data are 
desired but none have been c o l l e c t e d . 

I t i s easy to show that the equilibrium d i s t r i b u 
t i o n under the perturbed potential U1 i s related to 
that under U by 

p'(r) Q 1 
= — , (20) 

p(r) 0' f ( r ) 

where Q and Q' denote the two systems 1 configurational 
i n t e g r a l s . The histogram h 1 obtained under U' w i l l 
thus be approximately f l a t where h was peaked, and 
w i l l extend at least s l i g h t l y into the range not v i s i t 
ed by h. 

Figure 9 

h' (r) 

r= 10 20 30~* 40 50 
If there i s a bottleneck at r=30, the system i s much 
more l i k e l y to f i n d i t and suddenly leak through; i f 
not, one has a least measured the equilibrium d i s t r i b u 
t i o n of r i n a region where i t would be too low to 
measure d i r e c t l y . The normalizing factor Q/Q', neces
sary to make the connection between ρ and p', can 
found be from the histograms v i a eq. 20 or, more accu
r a t e l y , by eqs. 12a and 12b of reference 17. 

If the system suddenly and i r r e v e r s i b l y leaks into 
the region around r=4 0, i n d i c a t i n g a bottleneck, the 
function f ( r ) should be revised to f l a t t e n out both 
peaks of the bimodal d i s t r i b u t i o n , and produce an ap
proximately uniform d i s t r i b u t i o n over the whole range 
r=20 to 40. Sampling t h i s f1attened-out ensemble 
serves two purposes: 

1) I t allows a representative sample of configura
tions on the d i v i d i n g surface to be coll e c t e d i n a rea
sonable amount of computer time (the d i v i d i n g surface 
i s conveniently defined by r(q) = rmin, where rmin 
i s the minimum of the bimodal d i s t r i b u t i o n of p(r) 
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that would obtain under the unperturbed potential U.) 
From these, t r a j e c t o r i e s can be calculated i n the usual 
way, to obtain the second factor of eq. 7. 

2) By v i r t u e of the known r e l a t i o n (eq. 20) between ρ 
and ρ·, i t establishes a calorimetric path connecting 
the reactant region with the bottleneck, allowing the 
f i r s t factor i n eq. 7 to be calculated. 

The d e f i n i t i o n of the reactant coordinate used i n 
the MC pushing method may be derived from a separation 
into 'participant* and 'bystander' degrees of freedom, 
or i t may be arrived at i n t u i t i v e l y or empirically. 
Generally speaking, the more cleanly a reaction coordi
nate separates the two peaks of a bimodal d i s t r i b u t i o n , 
the higher the conversion c o e f f i c i e n t that can be ac
hieved with i t . 

Speeding up the Sampling of Configuration Space. 
Bottleneck methods allow infrequent events to be simu
lated with very l i t t l e e x p l i c i t dynamical c a l c u l a t i o n , 
since the trajectory only needs to be followed forward 
and backward u n t i l i t leaves the bottleneck. On the 
other hand, p a r t i c u l a r l y for strongly anharmonic sys
tems, they demand a great deal of MC or MD sampling of 
constrained or biased equilibrium ensembles, v i z . the 
ensemble on the d i v i d i n g surface, the ensemble i n the 
reactant zone, and perhaps several calorimetric i n 
termediates needed to compute the r a t i o of configura
ti o n a l i n t e g r a l s , Q+/Qa. I t i s important to be able 
to sample these ensembles e f f i c i e n t l y , i . e . without 
expending too much computer time per s t a t i s t i c a l l y - i n 
dependent sample point. This section discusses several 
curable kinds of slowness commonly encountered i n equi
librium sampling. The simplest kind of slowness, and 
perhaps the most serious, i s due to an unrecognized 
bottleneck within the one of the equilibrium ensem
bles. If the unrecognized bottleneck i s f a i r l y easy to 
pass through, i t w i l l only increase the autocorrelation 
time of the run sampling the ensemble; i f i t i s hard, 
i t w i l l lead to a completely erroneous sample. The 
cure i s to f i n d the bottleneck and treat i t e x p l i c i t 
l y . 

Another kind of slowness comes from the approxi
mately 1000-fold d i s p a r i t y between bonded and nonbonded 
forces among atoms. This means that a t y p i c a l covalent 
bond undergoes about 30 small-amp1itude, nearly-harmon
i c vibrations i n the time required for any other s i g n i 
f i c a n t molecular motion to take place. In doing dynam
i c s c a l c u l a t i o n s , these fast v i b r a t i o n a l modes are a 
nuisance because they force the use of a very short 
time step, about .001 psec. or l e s s . Fortunately, they 
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can be gotten r i d of i n either of two ways: 1) they can 
be a r t i f i c i a l l y slowed down (without a f f e c t i n g the 
equilibrium s t a t i s t i c a l properties of the system) by, 
i n e f f e c t , giving them extra mass (37); 2) they can be 
frozen out e n t i r e l y by incorporating constraints on 
bond distances and angles i n the equations of motion. 
I t was only recently recognized (38) that such const
r a i n t s , even when applied to a large number of bonds 
simultaneously, need not appreciably increase the ma
chine time required to do one integration step. Of 
course the mass-modified system does not have the same 
dynamics as the o r i g i n a l system, and the rigid-bond 
system has neither the same dynamics nor the same st a 
t i s t i c a l properties; however, accurate dynamics i s 
needed only i n the b o t t l e n e c k s — correct s t a t i s t i c a l 
properties are s u f f i c i e n t elsewhere. In view of the 
near-harmonicity of the bonded v i b r a t i o n s , i t i s proba
ble that t h e i r e f f e c t on the s t a t i s t i c a l properties 
could be computed as a perturbation to the s t a t i s t i c a l 
properties of a rigid-bond system. 

A t h i r d kind of slowness, that due to hydrodynamic 
modes, has been discussed already. I t i s d i f f i c u l t to 
do anything about these slow c o l l e c t i v e modes, but for 
tunately they cannot cost very many orders of magnitude 
i n a system of a few thousand atoms or le s s . 

A f i n a l kind of slowness i s that which sometimes 
arises (39, 17) i n Monte Carlo sampling under a biased 
potential of the form of eq. 19. Sometimes these runs 
exh i b i t discouraging1y long autocorrelation times for 
d i f f u s i o n of the reaction coordinate back and f o r t h 
along i t s a r t i f i c a l l y broadened spectrum. The reason 
for t h i s i s not always c l e a r , but sometimes i t may be 
due to a strong gradient of energy and entropy p a r a l l e l 
to the reaction coordinate, so that one end of the 
spectrum represents a small, low-energy region of co
nfiguration space while the other end represents a 
large region of uniform, moderately-high energy. Ordi
nary Monte Carlo t r a n s i t i o n algorithms (8), which make 
t r i a l moves symmetrically i n configuration space and 
then accept or reject them according to an energy c r i 
t e r i o n , cannot move very e f f i c i e n t l y i n such a gra
dient, because most t r i a l moves are made i n the d i r e c 
t i o n of increasing entropy, only then to be rejected 
for r a i s i n g the energy. This problem might be amelio
rated by using an unsymmetrical Monte Carlo t r a n s i t i o n 
algorithm, one that made t r i a l moves more often i n d i 
rections suspected of leading toward the small, low-en
ergy region, and compensated for t h i s bias by giving a 
one-way energy reward to moves i n the opposite d i r e c 
t i o n . 
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Summary. 
Some phenomena occurring i n systems of 3 to 10,000 

atoms are so infrequent that they would take thousands 
of years to simulate on a computer. Such long time 
phenomena (many orders of magnitude longer than the 
microscopic system's longest hydrodynamic relaxation 
time) involve a bottleneck or a c t i v a t i o n b a r r i e r , 
which, i f i t can be discovered, can be used to speed up 
the simulation by many orders of magnitude. The ma
chinery for doing t h i s consists of t r a n s i t i o n state 
theory supplemented by c l a s s i c a l t r a j e c t o r y c a l c u l a 
tions to correct for multiple crossings and by 
'calorimetric' Monte Carlo methods to evaluate a n a l y t i 
c a l l y i n t r a c t a b l e p a r t i t i o n functions. 

Before the development of the d i g i t a l computer, 
the main weakness of t r a n s i t i o n state theory was i t s 
dependence on the harmonic approximation; now i t s main 
weakness, and i t s main potential for future improve
ment, i s i n algorithms for finding bottlenecks. 

When the energy surface i s smooth on a scale of 
kT, bottlenecks can be i d e n t i f i e d with saddle points, 
and the need i s for an algorithm that, given a poten
t i a l minimum, w i l l f i n d a l l the reasonably low saddle 
points leading out of i t . E x i s t i n g algorithms are 
unreliable i n p r i n c i p l e (because a saddle point may be 
i n v i s i b l e a short distance away), but may be r e l i a b l e 
i n practice. More empirical t e s t i n g of them i s need
ed. 

When the potential energy i s rough on a scale of 
kT, saddle points (and t h e i r convenient unstable-mode 
hyperplanes) are no longer a good guide, and the job of 
selecting the reaction coordinate and d i v i d i n g surface 
becomes much more a r b i t r a r y and empirical. An impor
tant and poorly-understood intermediate case i s a po
t e n t i a l energy surface that i s smooth i n some d i r e c 
tions (the 'participant' degrees of freedom) and rough 
i n other directions (the 'bystander' degrees of free
dom) . 

Table I. outlines the steps for finding the bott
leneck, evaluating the rate constant, and generating 
t y p i c a l t r a j e c t o r i e s for infrequent events. 
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5 
Newer Computing Techniques for Molecular Structure 

Studies by X-Ray Crystallography 

DAVID J. DUCHAMP 

The Upjohn Co., Kalamazoo, MI 49001 

Crystal!ographers have been users of computers ever since 
computers became a v a i l a b l e f o r s c i e n t i f i c c a l c u l a t i o n s . The 
nature of cr y s t a l l o g r a p h i c c a l c u l a t i o n s used in molecular struc
ture determination—large amounts of data to be treated by 
rather complicated mathematics—makes e f f i c i e n t use of computers 
essential and led quite early to the development of rather sophis
t i c a t e d techniques f o r both manual and computer computations. 
The features which make cry s t a l l o g r a p h i c c a l c u l a t i o n s somewhat 
d i f f e r e n t include: 1) the use of symmetry, i.e. space groups, 
2) the use of a generalized coordinate system, 3) the three-
dimensional nature of both data and intermediate and f i n a l r e s u l t s 
4) the high precision of the r e s u l t s , leading to generous use of 
s t a t i s t i c s , 5) use of computer co n t r o l l e d data a c q u i s i t i o n , and 
6) the need f o r display and presentation of three-dimensional 
molecular structure information. For the most part, these are 
the areas i n which c r y s t a l 1ographers have tended to be in the 
fore f r o n t i n algorithm development. 

This paper concentrates on newer computing techniques, 
t r y i n g to give a sampling of recently developed techniques, which 
may be useful to both c r y s t a l 1ographers and non-crystallogra
phers. Material judged only understandable with in depth crys
t a l l o g r a p h i c background has been omitted. Apologies are made fo r 
the omission of many " f a v o r i t e " algorithms. Since many of the 
algorithms are unpublished, the more det a i l e d descriptions are 
taken of necessity from the author's own experience. The older 
algorithms not discussed here are well described i n standard 
reference works, such as "The International Tables f o r X-ray 
Crystal!oaraphy" (1) and textbooks by R o l l e t t {2) and Stout and 
Jensen (3J. In a d d i t i o n , many of the algorithms used in crys
t a l l o g r a p h i c computing are taken from numerical analysis (4) or 
are d i r e c t applications of standard computing algorithms such as 
those used i n sorting data. The recent textbook of Aho, Hopcroft 
and Ullman (5») (and the references therein) provide an excellent 
introduction to the l i t e r a t u r e of general purpose computing 
algorithms, as well as an introduction to the strategies used i n 
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development of e f f i c i e n t algorithms. 

Computing Techniques f o r X-ray Diffractometers 

In most computer-controlled diffractometer systems, the 
computer has control of the settings and rate of change of the 
angles (usually 4) which determine the o r i e n t a t i o n of the c r y s t a l 
and the p o s i t i o n of the r a d i a t i o n detector r e l a t i v e to the i n c i 
dent X-ray beam. I t can also usually open and close the incident 
beam shutter, and control the counting of pulses from the de
tect o r . The basic process of data c o l l e c t i o n , which a l l systems 
can perform, consist of: f o r each r e f l e c t i o n 1) ca l c u l a t e the 
settings of the angles, 2) move the diffractometer goniometer to 
those s e t t i n g s , 3) measure the i n t e n s i t y of the r e f l e c t i o n , and 
4) output the measured i n t e n s i t y . In addition most systems have 
enhancements, such as a program to aid i n determining the orien
t a t i o n of the c r y s t a l on the instrument. Usually a f a i r amount 
of manual operation i s required in s e t t i n g up the experiment, 
including the correct indexing of the r e f l e c t i o n s . 

In most cases, the crystallographer has l i t t l e control over 
the computer programs, since they are most often coded in assem
bl e r language on a small minicomputer, and are therefore d i f f i 
c u l t to modify. In some la b o r a t o r i e s , however, most of the 
programs are written in an e a s i l y changed high lev e l language, 
making i t easy to modify the algorithms used f o r programmed 
experiments, and to develop programs f o r new experiments. In the 
system i n our laboratory (Figure 1), a small instrument control 
minicomputer operates as a slave to a larger lab automation 
computer. When a Fortran program running in the larger computer 
wants a s p e c i f i c task performed on the diffractometer, i t loads a 
program into the minicomputer (unless the program i s already 
there), and sends i t information f o r the task to be performed. 
At task complete, the Fortran programs in the larger computer 
process the r e s u l t and determine the course of the experiment. 
Getting a piece of information measured on the diffractometer i s 
f u n c t i o n a l l y s i m i l a r to c a l l i n g a subroutine which returns a f t e r 
the information i s a v a i l a b l e . An a l t e r n a t i v e way to achieve the 
same f l e x i b i l i t y i s to b u i l d up the instrument control minicom
puter into a much larger system. 

Several improvements to the basic data c o l l e c t i o n algorithm 
have been made. Perhaps the most s i g n i f i c a n t i s the use of the 
step-scan technique, versions of which were developed in 1969 f o r 
our computerized diffractometer, and simultaneously elsewhere. 
The usual method of integrated i n t e n s i t y measurement i s to scan 
co n t i n u a l l y through the r e f l e c t i o n p r o f i l e , accumulating counts 
continuously, then to measure the background by counting f o r 
f i x e d time at each extreme of the p r o f i l e (6). Blessing, Coppens, 
and Becker have recently discussed the step-scan procedure (7). 
B a s i c a l l y i t consists of sampling the peak p r o f i l e at a number of 
points, perhaps 50 to 100, see Figure 2. Computer analysis of 
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Figure 1. UPACS computer-controlled diffractometer system 
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5. D U C H A M P Molecular Structure Studies 101 

the recorded p r o f i l e provides many advantages over the " b l i n d " 
continuous scan mode, allowing a much superior background cor
r e c t i o n , making possible the detection of abnormal p r o f i l e s , and 
producing a reduction i n experimental standard deviations over 
the former method. In addition the step-scan experiment i s 
generally f a s t e r since the time spent counting background i s 
eliminated. Further work on processing step-scan data (8, 9) 
and further work optimizing the measurement of x-ray i n t e n s i t i e s 
(10, Π , 12) have recently appeared; the references in those 
papers provide access to the e a r l i e r l i t e r a t u r e on t h i s subject. 

In addition to the improvement of the basic data c o l l e c t i o n 
procedures, programs and algorithms are being developed f o r other 
experiments to a s s i s t i n the use of the diffractometer and to 
make the process more automatic. Progress in t h i s area has been 
slow as recently pointed out by Spinrad (V3). The goal of being 
able to drop a c r y s t a l i n a magic funnel and have everything 
happen automatically i s not in s i g h t , however, s i g n i f i c a n t auto
matic enhancements are being made. Procedures to aid in indexing 
r e f l e c t i o n s were developed by Sparks (^4) and more recently by 
Jacobson (15); i n our laboratory a procedure involving somewhat 
more i n t e r a c t i o n with the diffractometer i s under development. 
Two experiments which we have found very useful--precise a l i g n 
ment of the x-ray tube and determination of precision unit c e l l 
parameters—are described i n d e t a i l below. 

When the x-ray tube i s changed on a diffractometer i t must 
be positioned very p r e c i s e l y to center the x-ray beam in the 
incident beam colimator. This i s accomplished by t r a n s l a t i n g the 
tube i n the plane perpendicular to the colimator. Approximate 
positioning i s e a s i l y accomplished manually. Then a tes t c r y s t a l 
i s placed on the diffractometer, and from angle values obtained 
by centering c e r t a i n r e f l e c t i o n s in the detector, misalignment of 
the tube may be infe r r e d . The process i s complicated by s l i g h t 
deviations of the c r y s t a l from the center of the goniometer (both 
i n height along the φ axis and t r a n s l a t i o n (normal to i t ) , the 
a r b i t r a r y zero point of the 0 angle, and possible misalignments 
of the zero points of the 2Θ, ω , and χ a n g l e s - - a l l of which 
a f f e c t the centering of a r e f l e c t i o n i n the detector. In our 
procedure, the user mounts the t e s t c r y s t a l , invokes the proce
dure and gives the computer approximate s e t t i n g angles f o r one or 
more r e f l e c t i o n s . The computer measures accurate centering 
angles f o r each t e s t r e f l e c t i o n at the 8 possible positions with 
ω = θ, as shown i n Table 1(a). From t h i s data, a simple algo
rithm allows the computer to separate the d i f f e r e n t v a r i a b l e s , 
and to d i r e c t the user exactly (to within the approximation of 
small t r a n s l a t i o n s ) how f a r and in what d i r e c t i o n to move the 
tube, see Table 1(b). Other valuable information derived from 
t h i s experiment are accurate determinations of the true zero's of 
the ω , 2Θ, and χ angles. The detailed equations are not pre
sented here, since they vary with goniometer geometry, however a 
short Fortran program f o r performing the c a l c u l a t i o n f o r the 
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Table I 

a) Settings with ω = θ 

2Θ ω 0 χ 
2Θ 2Θ/2 0 χ 

-2Θ -2Θ/2 0 χ 
-2Θ -2Θ/2 0 χ + 180 
2Θ 2Θ/2 0 χ + 180 
2Θ 2Θ/2 0 + 180 - χ 

-2Θ -2Θ/2 0 + 180 - χ 
-2Θ -2Θ/2 0 + 180 180 - χ 
29 2Θ/2 0 + 180 180 - χ 

b) Computer report (retyped f o r c l a r i t y ) 

X-RAY ALIGNMENT REPORT AFTER-ADJUST-AGAIN 3/4/75 12812 
Κ L TTH OMEGA PHI CHI INT 
0 0 16.46 8.21 332.04 78.98 815 
0 0 -16.45 -8.23 332.04 79.20 830 
0 0 -16.44 -8.21 332.04 180+79.20 811 
0 0 16.46 8.23 332.04 180+78.96 783 
0 0 16.45 8.22 152.03 - 79.16 917 
0 0 -16.46 -8.22 152.03 - 79.07 903 
0 0 -16.46 -8.23 152.03 180-78.95 896 
0 0 16.45 8.22 152.03 180-79.28 913 

PHI ERROR = -0.022 PHI (CORRECTED) = 332.062 
CHI (AVE) = 79.105 AVE DEL (CHI) = 0.110 

NEED TO MOVE TUBE DOWN 3.2 DIVISIONS 
CHI (ZERO) = -0.015 
OMEGA ERROR FROM CENTERING = -0.000 

PROBABLY CRYSTAL HEIGHT 
APPARENT TTH (ZERO) = 0.001 
APPARENT OMEGA (ZERO) = -0.000 

NEED TO MOVE TUBE OUT 0.3 DIVISIONS FOR TTH 
OR MOVE TUBE IN 0.1 DIVISIONS FOR OMEGA 
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5. D U C H A M P Molecular Structure Studies 103 

Syntex diffractometer i s av a i l a b l e from the author on request. 
Although a determination of the unit c e l l parameters r e s u l t s 

from determination of the or i e n t a t i o n and indices of several re
f l e c t i o n s used to i n i t i a t e the data c o l l e c t i o n experiment, we 
have found that a considerably more accurate determination may be 
made by running a separate experiment involving only measuring 
2Θ values f o r high 2Θ r e f l e c t i o n s . Depending upon the c r y s t a l 
system, 1, 2, 4, or 6 of the u n i t - c e l l a x i a l lengths and i n t e r -
a x i a l angles have to be measured experimentally, the remaining 
parameters being f i x e d by symmetry. The symmetry of the unit 
c e l l i s important and must be used i n precision u n i t - c e l l deter
mination. 

The procedure consists of four steps: 1) the computer 
surveying the i n t e n s i t i e s of previously measured r e f l e c t i o n s to 
choose about 20 high 2Θ r e f l e c t i o n s , 2) making highly accurate 
step-scans of the selected r e f l e c t i o n s , 3) c a l c u l a t i n g accurate 
2-theta values from the scan data; and 4) c a l c u l a t i n g u n i t - c e l l 
parameters from accurate 2-theta measurements. 

The method used to ca l c u l a t e the "best" 2-theta f o r each 
r e f l e c t i o n from step-scan data was developed e s p e c i a l l y f o r t h i s 
system. Each peak i s a c t u a l l y a doublet--one peak due to αχ 
radi a t i o n and another due to a 2 r a d i a t i o n . The method assumes 
that t h i s doublet may be f i t by the sum of two Gaussian curves 
separated by Δ2Θ which can be calculated from the wavelengths and 
the approximate 2-theta of the 0 4 peak: 

2Θ 1-2Θ 1\ 2 I 2θΊ.-(2θ!+Δ2θ) 

2e * w 1 +e w / A -I w (1) 
+d 

where I., i s the calculated count at 2Θ. ; w, c, and d are parame
ters dependent upon peak width, peak height, and background, 

respectively. The "best" 2-theta, 2θχ above, i s calculated by a 
non-linear least-squares procedure which varies c, w, and 2Θ Χ to 
minimize 

Σ [ g i i d ^ o - d i ) c ) ] 2 . (2) 
a l l 

steps 
where g. i s the weight calculated by taking the reciprocal of the 
standard deviation (from counting s t a t i s t i c s ) of (ΙΊ·)0· 

The value of d i s calculated by averaging step-scan observa
tions at ends of the scan, and i s not varied during the l e a s t -
squares procedure. Derivatives are calculated a n a l y t i c a l l y using 
expressions obtained by d i f f e r e n t i a t i n g equation 1. Up to 10 
it e r a t i o n s are allowed; 3 to 5 are usually required. 

When the method was developed, the e f f e c t s of c, w, and d on 
2θχ and σ(2θ χ), the error estimate f o r 2Θ Χ, were thoroughly 
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104 ALGORITHMS FOR C H E M I C A L COMPUTATIONS 

studied. The value used f o r d was found to have l i t t l e or no 
ef f e c t on eit h e r 2ΘΧ or σ(2θ 2), unless an u t t e r l y r i d i c u l o u s d 
value was assumed. Therefore d i s not i n the refinement. The 
values of c and w were found to have only small e f f e c t s on 2θ ΐ 9 

but somewhat larger e f f e c t s on σ(2θ!). The two parameters c and 
w are strongly c o r r e l a t e d — a l l o w i n g large s h i f t s in c before w 
has quieted down r e s u l t s i n an unstable refinement. 

Calculation of the u n i t - c e l l parameters from the 2Θ data i s 
accomplished by a special adaptation of a method used in several 
laboratories f o r determining accurate c e l l parameters from spe
c i a l f i l m data (16). For the general case 

j2 s i n 2 0 = h 2a* 2 + k 2b* 2 + £ 2c* 2 + 2k£b*c* cosa* + 

2h£a*c* cos3* + 2hk a*b* cosy* (3) 

where h, k, and ι are r e f l e c t i o n indices; a*, b*, c*, a*, 3*, γ* 
are a x i a l lengths and i n t e r a x i a l angles of the reciprocal c e l l . 
Equation 9 may be abbreviated as 

s i n 2 0 = h 2 s x + k 2 s 2 + £ 2s 3 + kish + h£s 5 + hks 6 (4) 

The l i n e a r least-squares procedure determines s l 9 ... , s 6 

so as to minimize 

^w^Cisin^Oo - ( s i n ^ d 2 (5) 
i=l 

Comparison of equations 3 and 4 shows immediately how to 
calc u l a t e the reciprocal c e l l parameters from the c o e f f i c i e n t s i n 
4. From these, the unit c e l l parameters may be calculated using 
standard expressions (17). The weight of each observation i s 
calculated by 

1 
W i = (sin 2θ)σ(29) ( 6 ) 

The e f f e c t of symmetry i s conveniently taken into account by 
r e s t r i c t i o n s on ... , s 6 as follows: 

Crystal System To Be Determined R e s t r i c t i o n s 
T r i c l i n i c S i , ... , s 6 None 
Monoclinic S i , s 2 , S 3 , s 5 s 4 = s 6 = 0 
Orthorhombic S i , s 2 , S3 s^ = s 5 = s 6 = 0 
Tetragonal s i , s 3 S2 = s i , Sh = ss = S6 = 0 
Hexagonal s l f s 3 s 2 = s 6 = s x , s 5 = s 4 = 0 
Cubic Sx s 3 = s 2 = s l 9 5 ^ = 5 5 = s 6 =0 
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5. D U C H A M P Molecular Structure Studies 105 

Standard deviations in u n i t - c e l l parameters may be calcu
lated a n a l y t i c a l l y by error propagation. In these programs, 
however, the Jacobian of the transformation from s l 5 ... , s 6 to 
u n i t - c e l l parameters and volume i s evaluated numerically and used 
to transform the variance-covariance matrix of ... , s 6 into 
the variances of the c e l l parameters and volume from which 
standard deviations are calculated. I f su i t a b l e standard devia
tions are not obtained f o r c e r t a i n of the unit c e l l parameters, 
i t i s easy to program the computer to measure additional r e f l e c 
tions which strongly c o r r e l a t e with the desired parameters, and 
repeat the f i n a l c a l c u l a t i o n s with t h i s additional data. 

Treatment of Crystal Deterioration: 

The v a r i a t i o n of the integrated i n t e n s i t i e s of X-ray r e f l e c 
t i o n as a function of time of exposure to X-rays i s a problem 
which has plagued crystal!ographers f o r some time. L i t t l e i s 
known of the physical and chemical processes leading to ra d i a t i o n 
damage (18). Usually several c a r e f u l l y chosen r e f l e c t i o n s 
(check r e f l e c t i o n s ) are repeated at regular i n t e r v a l s during data 
c o l l e c t i o n . The problem i s how best to use the f l u c t u a t i o n s i n 
these measured i n t e n s i t i e s to scale the observed set of inten
s i t i e s . We use 10 check r e f l e c t i o n s a f t e r experimenting with 
more and fewer. Since the fl u c t u a t i o n s of i n t e n s i t y with time 
are almost always non-linear, and frequently are non-monotonic 
al s o , a f a i r l y complicated function i s required to express the 
dete r i o r a t i o n scale f a c t o r . 

In the procedure described here, the scale f a c t o r i s rep
resented as a function of time C(t) described mathematically by 

where t i s the cumulative exposure time of the c r y s t a l , the f ^ U ) 
are functions of t , and the a^ are the c o e f f i c i e n t s to be deter
mined from the check r e f l e c t i o n data to specify C ( t ) . The 
c r i t e r i a chosen i s to determine the a^ so as to minimize the sum 
of the weighted second moments about the means of the scaled 
check r e f l e c t i o n i n t e n s i t i e s . With a second Lagrange undeter
mined m u l t i p l i e r term added to avoid the t r i v i a l minimum, the 
function minimized becomes 

C(t) = a i f i ( t ) + a 2 f 2 ( t ) + ... + a p f p ( t ) (7) 
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106 ALGORITHMS FOR C H E M I C A L COMPUTATIONS 

where t . . i s the time f o r the i ^ observation of the j * * 1 check 
r e f l e c t i o n , g.. i s i t s i n t e n s i t y . The weights w. are defined by 

IJ J 

W J = m j _ 1 Ç ^ j - 1 (8) 
where σ.. i s the standard deviation in g.., and m. i s the number 
of observations of check r e f l e c t i o n j . The b. are defined by 

j 
bj = mj-i £c(tij)gij (9) 

By s u i t a b l e mathematical manipulation the above may be shown to 
be a l i n e a r least-squares with constraint problem in the v a r i 
ables a^. Before the a k can be determined, the functions f k ( t ) 
must be s p e c i f i e d . 

I f C(t) i s chosen to be a simple polynomial i n t , (i.e., 
k-1 

f j j t ) = t ), and a d i r e c t least-squares solution i s ca l c u l a t e d , 
c a l c u l a t i o n trouble usually r e s u l t s since the determinant of the 
c o e f f i c i e n t s of the normal equations tends to be very small (19). 
A C(t) with a l l the f l e x i b i l i t y of the general polynomial i s 
obtained, and the numerical problem i s avoided by choosing the 
f k ( t ) to be the orthogonal polynomials of Forsythe (19). Cast 

in our notation, the f k ( t ) are defined r e c u r s i v e l y by 

f i ( t ) = 1 
f 2 ( t ) = (t - u 2 ) f x ( t ) 

f 3 ( t ) = (t - u 3 ) f 2 ( t ) - v 2 f i ( t ) 

f k ( t ) = ( t - u k ) f k . - , ( t ) - v k . - , f k . 2 ( t ) (11) 

where 

U l = _ U Ο 2 ) 
k dk-1 

w _ _ h i (13) 
v k - i - d k _ 2 

d k = £ ( f k ( t i j ) ) 2 (14) 
• 9 J 
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5. D U C H A M P Molecular Structure Studies 107 

In t h i s formulation, the needed c o e f f i c i e n t s a^ may be calculated 
d i r e c t l y without recourse to solving the usual eigenvector 
problem. 

In our programs provision i s also made f o r a dependence of 
scale f a c t o r on d i r e c t i o n in the c r y s t a l , h9 and on the Bragg 
angle, Θ. A new scale f a c t o r C'(t,Ji,£) i s defined as 

C'(t,h.0) = 1 + ( C ( t ) - l ) H(h) E(9) (15) 

where C(t) i s our o r i g i n a l function in time, H{h) i s a d i r e c t i o n 
dependent fa c t o r with s i x determinable parameters, and Ε(θ) i s 
a factor with one determinable parameter. The c o e f f i c i e n t s of 
t h i s generalized scale f a c t o r function i s determined to minimize 
the same quantity with C replacing C, by f i r s t solving as 
before with the new parameters set so that H{h) = Ε(θ) =1.0, 
then allowing a l l parameters to vary from that point in an 
i t e r a t i v e minimization procedure s i m i l a r to "steepest descents". 
A more detai l e d description of the generalized scale factor 
function i s contained i n an implementation of t h i s scaling 
algorithm in a Fortran data reduction program a v a i l a b l e from the 
author. 

Hidden Line Algorithms: 

In the display of a three dimensional object on a p l o t t e r or 
on the screen of a graphics terminal, the task of deciding which 
parts of the object should be shown and which should be e l i m i 
nated (or made dashed) i s known as the "hidden l i n e problem". 
This problem and the more complicated "hidden surface problem" 
has recently been reviewed by Sutherland, Sproull and Schumacker 
(20) from a sorting point of view. These algorithms are espe
c i a l l y important because programs with i n e f f i c i e n t hidden l i n e 
algorithms can use up enormous amounts of computer time and 
because manual "touch up" of drawings to eliminate hidden l i n e 
errors may be quite time consuming. The most e f f i c i e n t algo
rithms r e s u l t when the object to be drawn has special features 
which allow the general problems to be s i m p l i f i e d . Two problems 
are treated here i n some d e t a i l : the drawing of a cr y s t a l from 
face measurements and the drawing of a " b a l l and s t i c k " repre
sentation of a molecule. 

The problem of producing of a c r y s t a l l i k e that shown in 
Figure 3 arose i n a graphics program (21) used to v i s u a l l y 
compare the computer description of a cr y s t a l as a convex poly
hedron with the c r y s t a l as viewed on an op t i c a l goniometer. The 
problem i s one of displaying a convex polyhedron given the 
information describing the faces of the polyhedron. From t h i s 
information the faces which i n t e r s e c t at the various corners and 
the coordinates of the corners can e a s i l y be computed (22). 
From t h i s , a l i s t of edges--the l i n e s a c t u a l l y to be drawn in the 
figure--can e a s i l y be compiled. 
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In producing the drawing, a r o t a t i o n of the coordinates of 
the corners i s performed to give a set of x,y,z r e l a t i v e to an 
o r i g i n at the center with the χ axis aligned with the viewing 
d i r e c t i o n . Next i s i d e n t i f i c a t i o n of those edges which l i e on 
the convex polygon which defines the periphery of the polyhedron 
i n projection on the y,z plane. For each edge, defined by two 
corners i and j , the edge i s on the polygon i f a l l other corners 
e i t h e r l i e on the edge or on one side of i t in projection on the 
y,z plane, or simply i f 

( z r z j ) y k + ^j"V zk + V j " z i * j <
 o r <16> 

> 0 f o r a l l k 
or 

0 f o r a l l k 

For s i m p l i c i t y i n p r a c t i c e , the =0 case i s eliminated by s l i g h t 
t r a n s l a t i o n of corner coordinates. A l l other edges are e i t h e r 
" t o t a l l y hidden" or " t o t a l l y v i s i b l e " . The "hidden l i n e " prob
lem, therefore, becomes one of c l a s s i f y i n g the edges (the l i n e s 
a c t u a l l y drawn) into one of the three categories. Also a "to
t a l l y hidden" edge may not connect with a " t o t a l l y v i s i b l e " edge 
except through one of the corners on the peripheral polygon. 
Because of the convex property of the polyhedron, other edges may 
be c l a s s i f i e d by connectivity i f one edge not on the polygon i s 
c l a s s i f i e d . This i s accomplished e a s i l y by fi n d i n g two edges 
defined by corners i,k and i , j where corners i and j are on the 
polygon and k i s not. The edge defined by corners i,k i s e i t h e r 
" t o t a l l y v i s i b l e " or " t o t a l l y hidden" according as a and d 
defined below have the same or opposite signs, respectively. 

3 = γ ^ ζ Γ ζ . ) + γ . ( ζ Γ 2 ^ + γ ^ ζ Γ ζ . ) (17) 

d = x k ( y i z r y j z i } + x i ( y j z k - y k z j ) + xj (¥r yi 2k' ( 1 8 ) 

As many u n c l a s s i f i e d edges are c l a s s i f i e d by connectivity as 
possible. Then i f u n c l a s s i f i e d edges remain, equations 17 and 18 
are used to c l a s s i f y another, e t c . , u n t i l a l l edges are c l a s 
s i f i e d . 

In the DRAW program which we developed,the "hidden l i n e " 
algorithm f o r b a l l and s t i c k drawings of molecules (such as 
Figure 4) likewise makes use of special features of the object. 
The drawing i s composed of only two kinds of f i g u r e s - - c i r c u l a r 
atoms and trapezoidal bonds. Our algorithm i s s i m i l a r to one 
developed by Okaya (23). The more complicated case of general 
e l i p s o i d a l representation of atoms has been treated by Johnson in 
the l a t e s t version of his heavily used 0RTEP program (24). 

In p r i n c i p l e , when each atom or bond i s drawn, i t must be 
tested against a l l other bonds and atoms to see i f i t i s hidden, 
t o t a l l y or i n part. In the drawing operation, each atom or bond 
i s represented by a number (usually 100 to 200) of points with 
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Figure 3. Computer drawing 
of crystal from face description 

Figure 4. Ball and stick drawing of molecule of p-bromophenacyl ester of tiranda-
mycic acid 
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s t r a i g h t l i n e s connecting them; a separate v i s i b i l i t y t e s t must 
be made on each point i n deciding whether to draw the l i n e s to 
and from i t . As the number of atoms (n) grows, the complexity of 
the c a l c u l a t i o n increases as n 2. By using an ap p l i c a t i o n of the 
"divide and conquer" strategy (25), the problem i s reduced to a 
very quick approximately n 2 complexity part and a more time 
consuming almost η complexity part. At the time each atom or 
bond f i g u r e i s drawn, a quick t e s t i s employed to compile a l i s t 
of those atoms or bonds which could possibly overlap i n the 
fi g u r e . In practice the si z e of t h i s l i s t , a f t e r reaching a 
cer t a i n l e v e l , does not increase very much as η increases. This 
i s e a s i l y understood by considering that: 1) f o r m randomly 
d i s t r i b u t e d objects within a volume, the "object thickness" i s 
the cube roote of m, and 2) i n order to make a drawing under
standable, people usually draw figures with minimum overlap in 
the projection d i r e c t i o n . Therefore the time consuming point by 
point tests are performed only on a greatly reduced number of 
figur e s . A number of enhancements can be made to the point-by-
point t e s t which speed i t up but do not reduce i t s complexity. 
On the other hand, i n p r i n c i p l e , the complexity of the pretest 
portion can be reduced from n 2 to n 3 / 2 by ordering the bonds and 
atoms i n the longest d i r e c t i o n i n the plane of pro j e c t i o n , and 
only t e s t i n g figures l y i n g i n a relevant band. Since the pretest 
i s so f a s t , we have not implemented t h i s f i n a l refinement i n the 
batch versions of our program; however, i t i s under consideration 
f o r a graphics version now being implemented. 

Use of the Fast Fourier Transform: 

Although the p r i n c i p l e of the f a s t Fourier transform (FFT) 
algorithm has been widely understood f o r over ten years (26^ 27), 
the FFT i s only now beginning to be used widely f o r c r y s t a l 
lographic c a l c u l a t i o n s . The reasons f o r t h i s are: 1) the 
advantages of the FFT are not nearly as great i n cry s t a l l o g r a p h i c 
computing as i n other f i e l d s , 2) cr y s t a l l o g r a p h i c trigonometric 
Fourier algorithms (28) have been highly developed and are very 
e f f i c i e n t , and 3) incorporation of the special features of 
cry s t a l l o g r a p h i c c a l c u l a t i o n s , such as symmetry, has required 
additional algorithm development. 

In the simpler FFT applications to chemistry, such as in 
Fourier transform spectroscopy, the tremendous advantage of the 
FFT algorithm a r i s e s because f o r computing η Fourier c o e f f i c i e n t s 
from η data points, the FFT algorithm reduces the complexity from 
n 2 to η log n. This i s brought about by fac t o r i n g the transform 
very f i n e l y so as to allow c a l c u l a t i o n s common to several trans
formed points to be performed only once. In the e f f i c i e n t f o r 
mulations of the cr y s t a l l o g r a p h i c trigonometric Fourier algo
rithm, a ce r t a i n amount of fa c t o r i n g i s employed, leading to a 
complexity of approximately n 4 ' 3 (29) instead of the usually 
quoted n 2. In an earl y comparison"T29), factors i n improvement 
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by use of the FFT of 1.8 to 19.0 were achieved by use of the FFT 
algorithm; v e r i f y i n g that the thousand f o l d gains found in other 
areas are not present i n the c r y s t a l l o g r a p h i c case. For high η a 
point i s reached where the FFT i s more e f f i c i e n t . The s i z e of 
the problem necessary f o r the FFT algorithm to be considerably 
f a s t e r depends on the e f f i c i e n c y of the implementations of the 
respective algorithms; i.e., i t depends upon the c o e f f i c i e n t s 
which m u l t i p l y the complexity factor to give the cost of the 
c a l c u l a t i o n . I t i s not su r p r i s i n g that the area which i s making 
the most use of the FFT i s macromolecular crystallography where 
values of η are usually very large. 

Considerable work has been done recently on the problems of 
developing the FFT f o r c r y s t a l l o g r a p h i c use. The problem of 
incorporating space group symmetry has been elegantly treated by 
Ten Eyck (30) and i n a simpler fashion by Bantz and Zwick (31). 
Other implementations include those of Immirzi (32J and Lange, 
S t o l l e and Huttner (33), both of which t r e a t the problem of the 
enormous amount of computer storage required to store an en t i r e 
c r y s t a l l o g r a p h i c map (100,000 to 500,000 points are frequently 
required), and also the work of Mallinson and Teskey (34), which 
discusses the problem of handling negative indices economically. 

In the future the FFT algorithm w i l l be more widely used in 
small molecule as well as macromolecular crystallography, espec
i a l l y as new e f f i c i e n t FFT programs are integrated into the 
various program systems used f o r such c a l c u l a t i o n s . In p r a c t i c e , 
a good general purpose program ( e s p e c i a l l y e f f i c i e n t f o r small 
molecule crystallography) could be developed by combining the 
strengths of the FFT and trigonometric techniques. The c r y s t a l 
lographic Fourier transform, whether i t be done by FFT or other, 
can be factored into three parts, a " f i r s t dimension" i n which 
summation i s made over the d i r e c t i o n normal to the sections of 
the three-dimensional map, and a second and t h i r d dimension in 
the plane of the map sections. A computer formulation of the 
trigonometric t r i p l e product technique which incorporates the 
space group symmetry almost e x c l u s i v e l y in the f i r s t dimension of 
the c a l c u l a t i o n i s a v a i l a b l e (35). A program which performs the 
f i r s t dimension c a l c u l a t i o n i n the t r a d i t i o n a l space-group 
s p e c i f i c manner, and performed the second and t h i r d dimensions by 
the FFT algorithm would have several advantages. I t would make 
e f f i c i e n t use of the f a c t that in most cr y s t a l l o g r a p h i c Fourier 
c a l c u l a t i o n s there are 10 to 20 times more calculated g r i d points 
than input data, without having to resort to less e f f i c i e n t 
formulations of the FFT algorithms which require complex m u l t i 
p l i c a t i o n . I t would greatly a l l e v i a t e the storage problem, and 
would remove most of the symmetry considerations from the FFT 
portion of the c a l c u l a t i o n , leading to a simpler implementation 
at the inner most part of the c a l c u l a t i o n . This proposed program 
bears some s i m i l a r i t y to the work of Immirzi (32J, where the FFT 
was not used i n the f i r s t dimension because of storage consid
erations, but where symmetry was avoided by transforming the data 
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to t r i c l i n i c . In the l i m i t of high n, the proposed program would 
of necessity be slower than an a l l FFT program. In the case of 
small molecule Ε-maps, where the r a t i o of g r i d points to data i s 
e s p e c i a l l y high, t h i s program would be most e f f i c i e n t , i f done 
r i g h t , considerably more e f f i c i e n t than an a l l FFT implementation. 

Direct Methods: 

Direct methods i s the most widely used techinque for getting 
a t r i a l structure i n small molecule crystallography, and has 
increasing applications i n macromolecular crystallography as well 
(36). The problem i s one of fin d i n g a set of approximate phases 
0^ to assign the observed normalized structure factor magnitudes 

| E j so that a Fourier transform c a l c u l a t i o n can be performed to 
gi7e an electron density map from which atomic positions can be 
derived. Most computer programs f o r d i r e c t methods are based on 
the Σ 2 formula (37, 38) and the tangent formula (38), both of 
which r e l a t e phases by equations which have calculated proba
b i l i t i e s of being correct. The phases related i n both cases are 
those of r e f l e c t i o n t r i p l e s f o r which 

h + k + ι = 0 (19) 

where h9 Jc, and %_ are vectors whose components are the integer 
indices of the r e f l e c t i o n s which have large |E|. The algorithm 
used to search f o r these t r i p l e s i s of primary importance to the 
e f f i c i e n c y of most d i r e c t methods computer programs. The set of 
high |E| r e f l e c t i o n s usually comprise 0.1 to 0.3 of the symmetry 
independent r e f l e c t i o n s . In the search, a l l the symmetry related 
r e f l e c t i o n s must be used f o r two of the r e f l e c t i o n s ; in ortho-
rhombic, f o r example, the symmetry independent set must be 
expanded 8-fold e i t h e r p r i o r to the c a l c u l a t i o n or during each 
t e s t . The obvious three-loop way of f i n d i n g t r i p l e s leads to a 
n 3 complexity algorithm (and a l o t of wasted computer time). 
This can be changed to an n 2 complexity procedure i f each re
f l e c t i o n i s associated uniquely with an array subscript by some 
equation involving the integer i n d i c e s , so that given ji and jc, 
the subscript of i_ can be calculated and the presence of E £ 

i n the set can be check by table lookup. -
Perhaps the most e f f i c i e n t algorithm (used in several 

programs, including the program DIREC written by the author) i s 
one o r i g i n a l l y developed by Dewar f o r the MAGIC program (39). 
P r i o r to the searching operation, the set of high |E| r e f l e c t i o n s 
i s expanded to the f u l l set of r e f l e c t i o n s , and the h vectors are 
transformed into a set of real integers {m-j} i n such a way as to 
preserve the arithmetic r e l a t i o n s h i p among the h. One such 
mapping i s 

m = 1000000 h 2 + 1000 h 2 + h 3 (20) 
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where h vector components are h i 9 h 2 9 h 3 . Since the range of 
possible values of h^h^, and h 3 i s r e s t r i c t e d , i f equation (19) 
holds, the m values derived from the three vectors w i l l also sum 
to zero, and vice versa. Next the m-,- are sorted numerically with 
elimination of duplicates from the symmetry expansion. During 
these operations a pointer back to the o r i g i n a l r e f l e c t i o n and a 
symmetry operation code are c a r r i e d along with each m-j. The 
process of f i n d i n g a l l Jk and i_ which form t r i p l e s with Ih, i s thus 
transformed to the problem of fi n d i n g a l l pairs of integers from 
the ordered set {m-j} which sum to -n, where η i s the "m value" of 
h. The transformed problem has a very e f f i c i e n t s o l ution i n 
volving only one pass through {m-j}. Two pointers ( i and j ) are 
i n i t i a l i z e d to point at the beginning and at the end of the set 
res p e c t i v e l y ; a l l t r i p l e s are found by moving i and j toward each 
other u n t i l they meet, using the procedure diagrammed in Figure 
5. The s i m p l i c i t y of t h i s procedure can r e a d i l y be appreciated 
i f the reader w i l l construct an ordered array of 10 to 15 i n t e 
gers ( i n the range -20 to 20), and follow the algorithm to f i n d 
pairs which sum to a given value. A l t e r n a t i v e l y the pointers 
could be started at η as favored by Dewar (39), and moved outward 
in a l i n e a r sweep using a s i m i l a r procedure. 

The algorithm described above f o r f i n d i n g t r i p l e s may be 
extended to f i n d higher order r e l a t i o n s h i p s , f o r example, the 
quartets (four vectors, h9 Ik, i, and m sum to zero) f o r which new 
powerful formulas are being developed by Hauptman (40). However, 
simple extension of t h i s algorithm does not appear to be optimal, 
and more research i n t h i s area i s needed. 

When the phase re l a t i o n s h i p s and t h e i r p r o b a b i l i t y have been 
derived, several thousand inconsistent equations in a few hundred 
unknowns must be translated into a set (or sets) of phases. The 
procedures used f o r t h i s are very i n t e r e s t i n g , but too s p e c i f i c 
to crystallography to be discussed in d e t a i l here. One or more 
s p e c i a l l y chosen phases (depending on the space group) may be 
assigned "free" to f i x the degrees of freedom. Next the set of 
known phases usually i s extended by: 1) symbolic addition (41), 
wherein symbols of unknown value are assigned to a few selected 
r e f l e c t i o n s , and the set i s extended by algebraic manipulations 
which assign phases as l i n e a r combinations of symbols; or 2) the 
m u l t i - s o l u t i o n method (42) wherein a l l combinations of possible 
phase values f o r a few r e f l e c t i o n s are ca r r i e d through the ex
tension to give a number of possible phase sets. The next step 
i s to rank the phase sets which r e s u l t from the m u l t i - s o l u t i o n 
method, or from the assignment of numeric phases to the symbols 
used i n the symbolic addition method; no foolproof way to do t h i s 
has yet been found. Frequently several, sometimes many, sets of 
phases must be t r i e d before a t r i a l structure i s obtained. With 
enough perseverance, however, a t r i a l structure can almost always 
be obtained by d i r e c t methods using presently a v a i l a b l e programs. 
New th e o r e t i c a l developments i n d i r e c t methods hold promise f o r 
improved, more automatic computer programs fo r determining 
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Figure 5. Procedure for finding all pairs of integers with a given sum 
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st a r t i n g phase sets. 

Molecular Mechanics "Strain Energy" Calculations: 

Since molecular mechanics " s t r a i n energy" c a l c u l a t i o n s (43, 
44) have become a valuable tool in i n t e r p r e t a t i o n of molecular 
structure r e s u l t s from c r y s t a l l o g r a p h i c studies, c e r t a i n com
puting techniques used there w i l l be mentioned. The method i s 
simple i n p r i n c i p l e ; the s t r a i n energy of a p a r t i c u l a r conforma
t i o n of a molecule i s expressed as the sum of terms of several 
types, each related to c e r t a i n s t r u c t u r a l parameters; fo r ex
ample, bond length, non-bonded contacts, torsion angle. 

E s t r a i n = Ebond + Eangle + E t o r s i o n + ·"· ( 2 1^ 

Each term i s a simple equation involving one or more e m p i r i c a l l y 
derived potential parameters and one or more s t r u c t u r a l para
meters. In the usual c a l c u l a t i o n , the s t r u c t u r a l parameters are 
varied to minimize the s t r a i n energy, the potential parameters 
being held f i x e d . Crystal structure r e s u l t s are sometimes used 
to derive potential parameters (45, 46). 

In most studies of molecular structure s t a r t i n g from crys
t a l l o g r a p h i c r e s u l t s , i t i s useful to c a l c u l a t e the minimum 
energy f o r the molecule i n the c r y s t a l . Usually the molecule may 
be surrounded by i t s nearest neighbors in the c r y s t a l , and the 
minimization may be car r i e d out by holding the unit c e l l para
meters f i x e d and varying the atomic p o s i t i o n s , with preservation 
of space group symmetry. This simple method w i l l produce good 
r e s u l t s (provided s u i t a b l e potential parameters are used) i f 
c a l c u l a t i o n of the minimum energy molecular conformation i s 
desired. I t w i l l not s u f f i c e i f e i t h e r the unit c e l l parameters 
are to be varied, intermolecular potential parameters are to be 
varied, or i f accurate l a t t i c e energies are to be calculated. 
For these purposes l a t t i c e sums should be evaluated; a p a r t i c u 
l a r l y e f f i c i e n t method f o r doing t h i s i s the convergence accel 
eration algorithm of Williams (47). 

In our experience, the introduction of "extra p o t e n t i a l s " i s 
a p a r t i c u l a r l y useful technique when molecular conformations 
other than the minimum energy one must be explored. In t h i s 
method, potentials are added which make i t p r o h i b i t i v e l y expen
sive ( i n energy terms) f o r the molecule not to assume the desired 
s t r u c t u r a l feature. The t o t a l energy--strain energy plus "extra 
p o t e n t i a l " energy--is minimized, giving the minimum energy 
conformation of the molecule subject to the constraint imposed by 
the "extra p o t e n t i a l s " . 

E t o t a l = E s t r a i n + Σ E
e x t r a ^ 
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By subtracting the s t r a i n energy portion of the t o t a l energy from 
the s t r a i n energy of the molecule i n i t s minimum energy confor
mation, the cost of assuming the non-minimal conformation may be 
assessed. Many properties of molecules may be conveniently 
studied by t h i s technique, including: f l e x i b i l i t y of the molecule 
with respect to a c e r t a i n t o r s i o n angle, b a r r i e r s between confor
mational minimas, and the f e a s i b i l i t y of c e r t a i n conformations 
predicted to be " a c t i v e " . One a p p l i c a t i o n we have found espe
c i a l l y useful i s the matching of two molecules which are presumed 
to bind at the same active s i t e . In t h i s procedure, (see Figure 
6) two or more molecules are minimized simultaneously while being 
linked at c e r t a i n selected s i t e s by "extra p o t e n t i a l s " . One word 
of caution i s appropriate here--"extra p o t e n t i a l s " are usually 
set to be so strong that, without due care, the c a l c u l a t i o n may 
become unbalanced, causing c e r t a i n minimization techniques to 
converge quite slowly. This i s p a r t i c u l a r l y true of c e r t a i n 
"pattern search" routines (48) used in many programs. 

Minimization techniques are of great importance to both the 
e f f i c i e n c y of molecular mechanics computer programs, and the 
accuracy and r e p r o d u c i b i l i t y of the r e s u l t s . The energy expres
sion i s non-linear i n the variables used in the c a l c u l a t i o n . I f , 
as i s usual, atomic coordinates are the v a r i a b l e s , the number of 
variables i s greater than the number of degrees of freedom. The 
energy surface i s characterized by many l o c a l minima; and by the 
f a c t that a minimum i s frequently quite f l a t f o r considerable 
distances in parameter space. An optimal minimization algorithm 
f o r such problems i s yet to be discovered. Methods currently 
used include search techniques, which converge from large d i s 
tances, but are i n e f f i c i e n t in f l a t minima, and more complicated 
methods such as Newton's Method, which works well i n f i n d i n g the 
minimum but i s extremely time consuming i f the i n i t i a l s t a r t i n g 
point i s f a r o f f . 

Automating Crystallographic Calculations: 

During the course of a c r y s t a l structure determination a 
large number of d i f f e r e n t types of c a l c u l a t i o n s must be per
formed. P r i o r to the advent of c r y s t a l l o g r a p h i c computing systems, 
each type was incorporated into a d i f f e r e n t proqram with i t s own 
peculiar form of input and output. With the advent of program
ming systems (49, 50) must of the i n c o m p a t i b i l i t y between pro
grams, and much of the tedium of c r y s t a l l o g r a p h i c computing, was 
eliminated--how much so depends upon the p a r t i c u l a r system. 

A reasonable set of goals to s t r i v e f o r in automating a 
computing process are: 

a) single entry of data 
b) minimization of input, including providing defaults f o r 

a l l options and not requiring entry of anything the 
computer can c a l c u l a t e 
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c) minimization of input errors 
d) computer runs u n t i l a "human" decision i s needed 
e) minimum e f f o r t f o r a decision 
f ) minimum e f f o r t to implement decisions 

For example, i f the c r y s t a l l o g r a p h i c unit c e l l parameters are 
entered during data reduction c a l c u l a t i o n s , they should not have 
to be entered again in any subsequent c a l c u l a t i o n . One of the 
best examples of not minimizing input i s a computer program which 
requires the user to enter the number of atoms to be entered, 
instead of counting the atoms as they are entered. Good input 
engineering, including the use of alphabetic labels and free 
format where appropriate, w i l l minimize input errors. Factors 
which can minimize decision making e f f o r t include: organization 
of data pertinent to the decision in a short summary form, and 
presenting i t i n a way i t can be quickly assimilated by the user. 
A f t e r the r e q u i s i t e decisions are made, we can't say to the 
computer "continue with c a l c u l a t i o n x", but we should s t r i v e to 
come as close as possible to t h i s . 

There are problems complicating t h i s automation process, 
some are computer engineering, some p r a c t i c a l , and some b a s i c a l l y 
p h i l o s o p h i c a l . These include: the necessity f o r r e t a i n i n g 
optional ways of doing the c a l c u l a t i o n s , the need f o r the user to 
ret a i n control of the process, the r e s t r i c t i o n s placed on opera
t i o n by the various computer systems, avoiding the waste of 
computer time, and the inherent d i f f i c u l t y usually encountered in 
automating decision making. 

A c e r t a i n l e v e l of automation of the decision making and 
decision implementation processes has been achieved in our 
laboratory through use of a graphics terminal on-line to our 
large research computer (21). Figure 7 shows the operational 
hookup. Our graphics programs run in a high p r i o r i t y p a r t i t i o n 
i n what i s e s s e n t i a l l y a batch processing system. On-line disk 
l i b r a r i e s are used to pass data between our graphics programs and 
our regular batch c a l c u l a t i o n s which run at a lower p r i o r i t y . 
A l l our batch jobs are submitted through the graphics terminal, 
including the job which transfers the i n i t i a l data from the 
laboratory automation computer to the large computer. Any time 
consuming ca l c u l a t i o n s are run in batch mode. For example, 
electron density maps are calculated in a batch run, with the 
r e s u l t s being saved in a disk l i b r a r y ; a graphics program i s used 
fo r i n t e r p r e t a t i o n of the map since "human" decision i s usually 
required. The use of t h i s graphics terminal has cut the amount 
of people time required to run a series of c r y s t a l l o g r a p h i c 
c a l c u l a t i o n s by more than a factor of two. 

In the area of input engineering, i n the current version of 
the CRYM system (developed by the author), excluding the job 
c o n t r o l , 15 input records (card images) are required in one batch 
run to take an i n i t i a l set of data through a va r i e t y of data 
reduction c a l c u l a t i o n s , approxiate s c a l i n g , a d i r e c t methods 
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ALGORITHMS FOR C H E M I C A L COMPUTATIONS 

Figure 6. Two Steroids—19-nor androstenediol (a); and 7-ame-19-nor 
androstenediol (b)—as found in crystal (viewed normal to C ring). 
Dotted lines in (c) show a possible placement of "extra potentials" for 
linking the molecules during simultaneous strain energy minimization. 

SCOPE TERMINAL 

GRAPHICS 
P A R T I T I O N 

(HIGH P R I O R I T Y ) 

/GRAPHICŜ  /GÎ 
\HQL£CUL£/ V 

( X - R A Y LAB) 

(COMPUTER CENTER) 
IBM 3 7 0 / 1 5 5 

0 I S K L I B R A R I E S 

Figure 7. Graphics system for crystallographic 
computing at Upjohn 
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calculation, and calculation of the most probable Ε-map ready for 
interpretation on the graphics terminal. Analysis of this input 
shows that for the case of the morphine free base structure i t 
could be reduced to the four records shown below for the compu
tation of the 4 most probable maps. 

DATA REDUCTION (MORPHINE), SPACE GROUP = 19 

ASYMMETRIC UNIT C17 H21 04 Ν 

DIRECT METHODS 

EMAP, (MORPEMC*) 
By use of suitable abbreviations, a shorter form is possible. 

DR(M0RPHINE),SG=19 

AU C17 H21 04 Ν 

DM 

EM,1-4,(MORPEMC*) 
Our system does not have this type of input, but i t illustrates 
the direction we are headed. It is a worthwhile direction for 
any system of programs with a long lifetime. 

ABSTRACT 
This review presents a selection of newer algorithms used in 

X-ray crystallographic calculations. Some of the material is not 
previously published. Areas discussed in detail include: 
Algorithm design for computer-controlled diffractometers, a 
scheme for computer-aided alignment of X-ray tubes, a procedure 
for determining precision unit cel l parameters, a method for 
scaling intensity data for crystal deterioration, "hidden line" 
algorithms for drawing crystals from face descriptions and for 
drawing ball and stick molecules, crystallographic use of the 
"fast Fourier transform" method, use of "extra potentials" in 
molecular mechanics, and the total automation of the X-ray 
computing process. 
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6 
Algorithms in the Computer Handling of Chemical 

Information 

LOUIS J. O'KORN 

Systems Development Dept., Chemical Abstracts Service, 
The Ohio State University, Columbus, OH 43210 

The chemical l i t e ra tu re emphasizes the deta i led s t ructura l 
charac te r i s t ics of chemical substances; th is paper addresses 
computer-based algorithms that support the handling of informa
tion about chemical substances. The nature of problems requi r ing 
an algorithmic so lut ion , examples of spec i f i c algorithms to sup
port these solut ions, and some of the continuing problems are 
discussed. Since representation affects the nature of algo
rithms, several of the computer representations of a chemical 
substance are mentioned. For these representations, algorithm 
developments that perform interconversion, r e g i s t r a t i o n , and 
structure searching are discussed. 

Introduction 

The techniques utilized i n chemical information handling 
systems fall into two categories -- those which handle the pro
cessing of text and those concerned with the processing of chem
ical substance information. The general text handling processes 
i n chemical information handling systems are not substant ia l ly 
di f ferent from the processes of information handling systems for 
other scientific d i s c i p l i n e s . 

Although not discussed here, substantial development has 
occurred in the development of computer-based algorithms for text 
information handling systems. These computer-based text infor
mation handling systems provide for data base compilation to 
support t r a d i t i o n a l pr inted publ ica t ion and also the se lect ive 
dissemination of the information. 

Algorithm development i n the areas of computer ed i t ing , data 
base management, sor t ing, computer-based composition, and text 
searching have been critical to the overa l l development of com
puter-based primary and secondary publ icat ions systems and text 
search services. Results of these developments are i l l u s t r a t e d 
in the computer-based information system used at Chemical 
Abstracts Service (CAS) [1]. Lynch [2] describes p r i n c i p l e s and 
techniques for the computer-based information services and 

122 
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6 O K O R N Computer Handling of Chemical Information 123 

Cuadra [3J provides annual reviews of developments i n informa
t ion handling. 

It i s the set of methods for representing, sor t ing , mani
pulat ing and re t r i ev ing information about chemical substances 
that dist inguishes the techniques of chemical information hand
l i n g from those of other d i s c i p l i n e s . Chemical l i t e ra tu re empha
sizes the deta i led s t ructura l charac te r i s t ics of chemical sub
stances. This i s i l l u s t r a t e d by the fact that for the 392,000 
documents abstracted i n 1975 i n CHEMICAL ABSTRACTS, 1,514,000 
chemical substance index entr ies were generated. Of these chem
i c a l substance index entr ies , 368,000 corresponded to substances 
which were reported for the f i r s t time i n 1975. 

This paper addresses the computer-based algorithms that 
support the handling of chemical substance information. Since 
the methods used to represent information about chemical sub
stances are c r i t i c a l to the nature of the algorithms used, a 
var ie ty of chemical substance representation systems are pre
sented, along with the various system processes necessary to 
handle computer-based f i l e s of chemical substance information. 
The algorithm developments that support these system processes 
are summarized, and sample algorithms are provided i n the appen
dix to i l l u s t r a t e supporting system processes in areas of r e g i s 
t r a t i o n , substructure searching, and interconversions. 

Lynch and others [4] provide an overview of p r inc ip les and 
techniques for computer handling of information on chemical sub
stances, and the charac te r i s t i cs of information handling systems 
u t i l i z i n g these p r i n c i p l e s and techniques. 

Representations of Chemical Substance Information 

Chemical structure diagrams are two-dimensional v i sua l 
descr ipt ions of a chemical substance and provide an important 
medium for communications between chemists. Employing conven
tions for representing the three-dimensional s t ructura l features 
i n the plane, these structure diagrams f a l l short of descr ibing 
geometrical r e a l i t y but they are the accepted way to describe 
chemical substances. Because s t ructura l diagrams are d i f f i c u l t 
to convey both o r a l l y and i n written text , several other repre
sentation systems have been developed. Many of these chemical 
substance representation systems were developed p r i o r to , but 
have been u t i l i z e d i n , computer-based chemical substance informa
t ion handling systems. In addi t ion , several representation 
systems more amenable to algorithmic computer processing have 
been developed. 

For input, storage, manipulation, and output within com
puter-based systems, a representation of the chemical substance 
must be selected. The se lec t ion of a pa r t i cu la r representation 
scheme for an information system i s based on the size of the 
f i l e s to which i t appl ies , the functions to be performed, the 
avai lable hardware and software, and the desired balance between 
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manual and machine processes. The substance representation 
system i s c r i t i c a l to the nature of algorithms in computer-based 
chemical substance information handling systems. 

Not a l l representations are of equivalent descr ipt ive power. 
Two important charac te r i s t ics of a representation are unambiguity 
and uniqueness. A representation i s unique i f , upon applying the 
rules of the system to a chemical substance, only one representa
t ion can be derived. A representation i s unambiguous i f the 
representation applies to only one chemical substance, although 
there may be more than one possible representation for each chem
i c a l substance. For example, in Figure l a , the systematic name 
provides a unique, unambiguous representation. The molecular 
formula, Figure l b , i s a unique but ambiguous representation; 
unique because for any chemical substance there i s only one 
molecular formula, but ambiguous because isomers also have th i s 
molecular formula. The a r b i t r a r i l y numbered connection table , 
Figure l c , provides a non-unique, unambiguous representation. 
The representation i s unambiguous since i t corresponds to one and 
only one substance, but i t i s not unique because a l ternat ive 
numberings of the connection table would resu l t i n di f ferent 
representations for the same chemical substance (the connection 
table representation i s discussed i n more d e t a i l below). In 
addit ion to being categorized according to the i r uniqueness and 
ambiguity, chemical substance representations commonly used with
i n computer-based systems can be further c l a s s i f i e d as systematic 
nomenclature, fragment codes, l inear notations, connection tables , 
and coordinate representations. 

Systematic Nomenclature. Systematic nomenclature provides 
a unique, unambiguous representation of a chemical substance 
by the appl icat ion of a rigorous set of systematic nomenclature 
ru les . A representation of a chemical substance i s constructed 
by applying these nomenclature rules to combine terms which 
describe the indiv idua l r ings , chains, and functional groups 
within the chemical substance. Chemical nomenclature provides 
a representation which can be interpreted d i r e c t l y by the prac
t i c i n g chemist, i s general ly suitable for ora l discourse, can be 
used i n a pr inted index, and i s increasingly avai lable i n com
puter-readable f i l e s . Davis and Rush [5, Chapter 8] describe 
the o r i g i n , development, and examples of systematic nomenclature 
systems. 

Figure 2 provides an example of systematic nomenclature 
u t i l i z i n g the CHEMICAL ABSTRACTS NINTH COLLECTIVE INDEX Nomen
c lature Rules [6], The systematic name i n t h i s example i s 
cyclohexanol, 2-chloro- . It i s generated by (1) determining the 
p r i n c i p a l functional group, the OH group; (2) determining the 
r i n g or chain to which i t i s d i r e c t l y attached, cyclohexane; 
(3) naming the functional group and i t s attached r i n g , cyc lo
hexanol; and (4) naming a l l other functional groups and ske le ta l 
fragments, 2-chloro, where the locant 2 iden t i f i e s the point of 
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attachment to the cyclohexane ring. 
Fragment Codes. Fragment codes are a series of predefined 

descriptors which are assigned to significant substructural 
units, e.g., rings or functional groups. A given code is as
signed to a chemical substance i f the structural component occurs 
within the chemical substance. Typically, fragment codes pro
vide a unique, ambiguous description of a chemical substance. 
With the introduction of punched-card systems, fragment code 
systems became popular because of the simplicity of representa
tion and the ease of the coding and searching operations. Since 
fragment codes offer only a partial description of a chemical 
substance based on predefined descriptors, there are situations 
for which certain substructural components that were not i n i t i 
ally anticipated and defined cannot be searched and situations 
of extraneous retrievals of structures containing the needed 
fragments but not in desired relationships. Although fragment 
codes are valuable for subclassification of f i l e s , in the case 
of large fi l e s , fragment codes are usually accompanied by other, 
more complete representations. Figure 3 provides an example of 
a fragment code representation utilizing the Ring Code System 
[7], with codes corresponding to the card columns and punches 
for the particular characteristic cited. 

Linear Notation. Linear notation systems use a linear 
string consisting of a set of symbols to represent complete topo
logical descriptions of chemical substances. Each system has 
symbols which represent atoms or groups of atoms, a syntax to 
describe interconnections, and rules for ordering the symbols 
to provide a unique and unambiguous representation of the topo
logy of a chemical substance. After deriving a linear notation 
by applying a set of ordering rules, linear notations are easy 
to input and require no specialized input equipment. The 
representation is very compact and the f i l e structure is simple; 
also linear notations can be utilized in printed indexes. Davis 
and Rush [5, Chapter 9] provide general information on linear 
notation systems and a more detailed discussion of the origin 
and development of the IUPAC, Wiswesser, Hayward, and Skolnik 
linear notation systems. 

Figure 4 provides an example of a representation using 
Wiswesser Line Notation. For this example, the Wiswesser Line 
Notation is L6TJ AQ BG. The ring system is cited f i r s t and is 
represented by L6TJ where L indicates the start of a carbo-
cyclic ring, 6 indicates a six-member ring, Τ indicates that the 
ring is fully saturated, and J indicates the end of the ring 
system. The substituents CI and OH are represented by G and Q, 
respectively, and their positions of attachment are identified 
by the locants A and B. Since Q occurs later than G is the 
defined collating sequence, Q is cited before G. 
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a. ) Systematic Nomenclature: Benzene, 1,4-dichloro-

b. ) Molecular Formula: C 6 H 4 C 1 2 

c. ) Connection Table: 

Atom No. Element Bonds Connections 

C l ' 1 Cl s 2 
2 c S,S,D 1,3,7 
3 c S,D 2,4 
4 c D,S 3,5 
5 c S,D,S 4,6,8 

IS 6 c D,S 5,7 
C\8 7 c D,S 2,6 

8 Cl S 5 

Figure 1. Various representations of the chemi
cal substance 

Cyclohexane -

Cl chloro 

tOH <L^ ol 

Cyclohexanol, 2-chloro-

Figure 2. Representation using system
atic nomenclature 

Figure 3. Representation using frag
ment codes 

a: 
Code Characteristic 

2/12 One Isolated Ring 
4/1 One 6-member Fully Saturated 

Carbocyclic Ring 
17/1 Chlorine Present 
18/1 One OH 

Figure 4. Representation using 
Wiswesser line notation L6TJ AQ BG 
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Connection Tables. A structure diagram of a chemical sub
stance can be viewed as a graph with the nodes corresponding to 
the non-hydrogen atoms of the substance and the edges connecting 
the nodes corresponding to the bonds of the substance. Given an 
a rb i t ra ry numbering of the non-hydrogen nodes of the graph, the 
connection table i s a tabular descr ipt ion of the graph i n which 
each node i s both l i s t e d i n numerical order and i s described by 
the element symbol and the interconnections of each atom with 
each other atom are e x p l i c i t l y described. Structural de ta i l s 
such as charge, abnormal valency, and i so topic mass can be 
recorded with each atom. Beyond the atoms and bonds, the connec
t ion table introduces no concepts of chemical s igni f icance into 
the representation. Consequently, connection tables can be 
input by c l e r i c a l s ta f f with l i t t l e t r a i n i n g . Figure 5 provides 
an example of a connection table. Since a l l interconnections are 
c i ted twice, th is form i s ca l l ed a redundant connection table . 
By numbering the atoms of a structure such that once an atom has 
been numbered, a l l un-numbered atoms d i r e c t l y connected to i t 
are numbered, and by c i t i n g only connections to lower-numbered 
atoms, a more compact connection table can be derived. Figure 
6 provides an example of a compact connection table . Since the 
interconnection between Atom 7 and Atom 8 has not been c i t e d , 
these attachments, which complete the descr ipt ion of the in te r 
connections of the structure, are c i t ed i n a f i e l d ca l l ed the 
r ing closure l i s t . 

Dittmar, Stobaugh, and Watson [8] describe the connection 
table u t i l i z e d i n the CAS Chemical Registry System. Lefkowitz 
[9] describes a concise form of a connection table , ca l l ed the 
Mechanical Chemical Code, which does not e x p l i c i t l y ident i fy the 
bonds and has at t r ibutes of both a connection table and l inear 
notat ion. 

The DARC code [10] resembles a connection table , since i t 
expresses or implies the nature of each atom and bond, but i t i s 
generated in a concise, l inear form. The descr ipt ion begins 
with one atom which i s chosen as the "focus" of the structure 
and then proceeds outward, describing the "environment" of the 
"focus." 

Coordinate Representation. A coordinate representation of 
a chemical substance i s a recording of the atoms and bonds of 
that substance with an ind ica t ion of the i r r e l a t i ve pos i t ion i n 
a plane. This coordinate representation provides a valuable form 
to f a c i l i t a t e on- l ine , real- t ime manipulation of the structure 
diagram and to store the diagram for subsequent composition i n 
journals , handbooks, and search output. Because th i s representa
t ion i s d i f f i c u l t to manipulate, i t i s t y p i c a l l y converted to 
some other form for other information system functions. Farmer 
and Schehr [11] describe the approaches and c a p a b i l i t i e s used at 
CAS for representing and processing a coordinate form of s t ruc
ture diagrams. 
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Figure 7 graphica l ly shows a coordinate representation of 
the chemical structure diagram.^^Every iden t i f i ab le substructural 
uni t has a node, symbolized by , associated with i t . The node 
corresponding to the complete structure diagram i s the root node 
and i s the o r i g i n of the coordinate system. Every atom ( inc lud
ing implied carbonsl and bond of the structure has a leaf , sym
bol ized by I 1 , associated with i t . In the structure diagram, 
a lea f contains the characters for the element symbols or the 
l i n e de f in i t ions for the bonds and the i r coordinates to indicate 
the pos i t ion i n the plane. Coordinate data for a leaf or node 
are r e l a t i v e to i t s parent node. Thus i t i s possible to change 
the coordinates of an ent i re subtree by changing the coordinates 
of the parent. 

Processes 

The a b i l i t y to ident i fy and c o l l e c t a l l information about a 
pa r t i cu la r chemical substance at one point i s essent ia l to com
puter-based chemical information handling systems. This e l i m i 
nates the redundancy of work, e . g . , i n b i o l o g i c a l t es t ing ; i t 
permits ef fect ive indexing of chemical substance information and 
i t allows one to determine i f a substance has been previously 
synthesized. The data base resu l t ing from these processes can 
also be u t i l i z e d for the i d e n t i f i c a t i o n of those substances with 
common s t ructura l cha rac te r i s t i c s . With the var ie ty of chemical 
substance representation systems, the a b i l i t y to interconvert 
between representations allows f l e x i b i l i t y i n performing system 
functions and permits the interchange of information among 
various chemical substance information handling systems. The 
system processes and algorithm development to support these 
processes are described below. 

Regis t ra t ion. The reg i s t ra t ion of a chemical substance i s 
the set of data management procedures which enables a l l informa
t i o n r e l a t ing to a spec i f i c chemical substance to be l inked 
together. The r eg i s t r a t ion procedure i s concerned with deter
mining i f a po ten t i a l l y new substance i s equivalent to a sub
stance already on f i l e or i f i t i s new, i n which case the sub
stance i s added to the f i l e . 

The r eg i s t ra t ion procedure used i s determined by whether the 
s t ructura l representation i s both unique and unambiguous. In 
systems without a unique and unambiguous representation of a 
chemical substance, the unique and unambiguous i d e n t i f i c a t i o n i s 
accomplished through the r eg i s t r a t ion processes. I n i t i a l l y , the 
f i l e of substances i s par t i t ioned into small groups of sub
stances on the basis of unique and ambiguous c h a r a c t e r i s t i c s . 
For a po ten t i a l l y new substance, i t s unique and ambiguous char
a c t e r i s t i c s are i d e n t i f i e d and f i n a l determination of whether 
the candidate substance i s new i s made by d i rec t atom-by-atom 
structure comparison of the candidate with the subgroup of the 
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ex is t ing substances that have the same cha rac te r i s t i c s . The 
se lect ion of charac te r i s t ics for the p a r t i t i o n i n g i s obviously-
c r i t i c a l , because the effectiveness of th i s r eg i s t r a t ion tech
nique i s dependent on l i m i t i n g the s ize of the subgroups. This 
technique i s ca l l ed the isomer so r t - r eg i s t ra t ion technique. 
Brown and others [12] describe the Merck, Sharp, and Dohme chem
i c a l structure information system which u t i l i z e s th i s approach. 

In systems that use a unique and unambiguous representation, 
determining i f a po ten t i a l l y new substance i s already on f i l e 
reduces to the comparison of the unique, unambiguous representa
t ion of candidate substance to the unqiue, unambiguous repre
sentation of the substances previously on f i l e . With l inear 
notations, the unique, unambiguous representation i s t y p i c a l l y 
achieved through manual encoding of the chemical substance. 
Eakin [13] describes the chemical structure information system 
at Imperial Chemical Industries L t d . , where r eg i s t ra t ion i s 
based on Wiswesser Line Notation. For connection tables , the 
unique, unambiguous representation i s derived automatical ly, 
i . e . , a s ing le , invariant numbering of the connection table i s 
a lgor i thmica l ly derived. 

The algorithm used i n the CAS Chemical Registry System to 
generate a unique, unambiguous representation from an a r b i t r a r i l y 
numbered connection table [14] i s described i n a la ter sect ion. 
Dittmar, Stobaugh, and Watson [8] provide a descr ipt ion of the 
general design of the CAS chemical structure information system 
which u t i l i z e s a unique, unambiguous connection table . 

Substructure Searching. Regis t ra t ion, as described i n the 
previous sect ion, i s a form of fu l l - s t ruc tu re searching. A l 
though the r eg i s t ra t ion process i s concerned with determining 
i f a complete structure existed previously within a c o l l e c t i o n , 
the data base resu l t ing from the r eg i s t r a t ion processes can be 
used for other purposes, i n pa r t i cu la r for substructure search
ing. Substructure searching i s the i d e n t i f i c a t i o n of a l l sub
stances within a f i l e which contain a given p a r t i a l s tructure. 
Although substantia l at tent ion has been given to substructure 
searching, several problems s t i l l remain, p a r t i c u l a r l y i n the 
on- l ine substructure searching of large f i l e s , i . e . , those that 
contain more than a m i l l i o n substances. 

With the var ie ty of chemical substance representations, i . e . , 
fragment codes, systematic nomenclature, l inear notat ions, and 
connection tables , a d i v e r s i t y of approaches and techniques are 
used for substructure searching. Whereas unique, unambiguous 
representations are essent ia l for some reg i s t r a t ion processes, 
i t i s important to note that th i s often cannot be used to 
advantage i n substructure searching. With connection tables , 
there i s no assurance that the atoms c i ted i n the substructure 
w i l l be c i ted i n the same order as the corresponding atoms i n the 
structure. With nomenclature or notation representation systems, 
a substructural uni t may be described by di f ferent terms or 
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symbols i n the complete structure because of the context i n which 
the substructural uni t appears. 

Fragment code systems, devised to permit r e t r i eva l of a 
chemical structure in a var ie ty of ways, previously u t i l i z e d 
manually derived codes which were stored on and searched from 
punched cards. With the development of computer techniques, 
many of the ear ly systems were expanded to permit the storage 
and search of a wide var ie ty of more complex codes. The frag
ments may correspond to general spec i f i c or s t ructura l features 
and are often organized to allow searching at any leve l of 
s p e c i f i c i t y . Search questions are stated in terms of the frag
ments used for representation and thus r e t r i eva l s consist of 
a l l substances containing the required fragments. Because the 
addit ion of new s t ructura l features requires the re-analys is of 
the previously processed f i l e , attention has been given to the 
automatic der ivat ion of fragment codes from an unambiguous sub
stance representation. The development of the Gremas fragment 
code system at International Documentation i n Chemistry [15] was 
o r i g i n a l l y based on manually derived fragment codes but has 
subsequently been expanded to generate the codes from connection 
tables and topological descript ions that have been input by an 
op t i ca l scanning device. Craig [16] describes the fragment codes 
r e t r i e v a l system used by Smith, Kl ine , £ French Laboratories. 

With the increasing a v a i l a b i l i t y of computer-readable f i l e s 
of systematic nomenclature and c a p a b i l i t i e s for text searching, 
at tent ion has been given to the development of substructure 
searching of f i l e s of systematic nomenclature using search terms 
that are also systematic nomenclature terms. Fisanick and others 
[17] describe an invest igat ion into nomenclature-based sub-
structure searching using techniques and search aids developed 
at CAS. 

Substructure searching based on l inear notations can be 
accomplished i n both an automated and non-automated mode. Dyson 
[18] describes a computer-produced permuted index that supports 
the manual searching of the Dyson-IUPAC Linear Notation for sub-
s t ructura l components. Computer-based substructure searching of 
a l inear notation involves examining the symbols of the l inear 
notation to determine i f the substructural features ex is t . 
Granito and Gar f ie ld [19] contrast substructure r e t r i e v a l systems 
based on fragment codesT" connection tables , and l inear notations. 
In addi t ion , they describe appl icat ions of Wiswesser Line Nota
t ion at the Inst i tute for S c i e n t i f i c Information that support 
substructure searching, r eg i s t r a t ion , structure/property r e l a 
t ionship studies, and display . Lynch and others [4, Chapter 5] 
describe techniques and consideration for the computer-based 
searching of l inear notations. As with nomenclature substructure 
searches, the success of a substructure search of l inear nota
t ion depends d i r e c t l y on the a b i l i t y of the questioner to 
ant ic ipate the environment of the required fragment i n various 
structures. 
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Depending on the sophis t ica t ion needed, substructure search
ing can be accomplished with a var ie ty of the representations of 
a chemical substance. Some substructure searches can only be 
adequately answered by a complete atom-by-atom and bond-by-bond 
search for which a connection table , with i t s e x p l i c i t descr ip
t ion of f u l l s t ructura l d e t a i l , i s essent ia l . 

There are two approaches to the atom-by-atom substructure 
search of a connection table : i t e ra t i ve atom-by-atom search [20] 
and the Sussenguth set reduction technique [21]. Because each 
of these specify a l ternat ive atoms and bonds"~Tnd a l ternat ive 
subgroups, there i s v i r t u a l l y no l i m i t to the degree of general
i t y or s p e c i f i c i t y of the search. 

The i t e r a t i v e atom-by-atom search involves locat ing the 
least commonly occurring atom i n the substructure and searching 
for each other atom of the substructure by path- t rac ing. When a 
non-match i s found, searching i s continued by backing up to the 
most recent branch point and proceeding along another path. This 
i t e ra t i ve procedure i s continued u n t i l the substructure i s found 
or the whole structure has been examined without f inding the 
substructure. 

The Sussenguth set reduction technique involves p a r t i t i o n 
ing the atoms of both the substructure and the structure based 
on the atoms, bonds, and interconnections. The technique 
involves generating subsets of atoms for the structure and the 
subsets of atoms for the substructure, based on the elements, 
bond values, and number of attachment. For example, a l l carbon 
atoms would be i n the same subset, a l l atoms with s ingle bonds 
attached would be i n the same subset, etc. These subsets would 
then be further par t i t ioned by intersect ing pa i rs of subsets - -
e . g . , a l l carbons with s ingle bonds attached would be i n a sub
set, a l l carbon with double bonds attached would be i n the same 
subset, e tc . Addit ional subsets would then be generated using 
the connections of each atom, and further p a r t i t i o n i n g would be 
attempted. These processes for p a r t i t i o n i n g and generating sets 
lead to one of the following s i tua t ions : (1) a complete corre
spondence between each atom i n the substructure and the struc
ture, i n which case the substructure i s contained within the 
structure; or (2) a non-correspondence between each atom of the 
substructure and the structure, in which case the substructure 
i s not contained within the structure; or (3) a s i tua t ion i n 
which no d i rect correspondence can be found, because ei ther the 
properties used to p a r t i t i o n the atoms were not powerful enough 
to d is t inguish between each atom or there i s more than one 
correspondence between the substructure and structure. In the 
t h i r d case, the various a l ternat ives for the correspondence 
between substructure and structure must be t r i e d , thus leading 
to the correspondence or a contradic t ion . 

Both of these approaches to substructure searching of a 
connection table are extremely time-consuming, and i t i s usua l ly 
necessary for economic reasons to use some form of screening 
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Atom No. Elements Bonds Connections 

;ct: 
1 C s , s 2,7 
2 C s , s 1,3 
3 c s , s 2,4 
4 c s , s 3,5 
5 c s , s , s 4,6,7 
6 ο s 5 
7 c s , s , s 1,5,8 
8 CI s 7 

OH 

Figure 5. Representation using connection table 

Atom No. Attachment Element Bond 
1 C 

5 2 I C S 
j ^ N ^ C I * 3 I C S 
Γ Τ 4 1 O S 

" S ^ O H 5 2 C S 
3 ° H 6 2 Cl S 

7 3 C S 
8 S C S 

Ring Closure 7/8 S 

Figure 6. Representation using compact connec
tion table 

Figure 7. Coordinate representation of struc
ture diagram 

Simple Pairs C—C 

Augmented Pairs 
(where the connectivities 
of the atoms are included) 

Bonded Pairs 

2 C — C1 

(where the bond values — C -
Figure 8. Bond-centered fragments for attachments are included) 
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system. In fact , i t may be necessary to develop some form of a 
screening system for large f i l e s , regardless of the representa
t i o n system. Screening i s the f i r s t stage of a substructure 
search and i s intended to inexpensively eliminate a large number 
of structures which do not meet the requirements of a p a r t i c u l a r 
substructure search question. Screens are charac te r i s t ics which 
can be ident i f i ed i n the substances i n a f i l e ; they are s imi la r 
to fragment codes but usual ly consist of computer-generated data 
of s t ructura l s igni f icance (elements, bonds, counts, small sub-
s t ructura l units) rather than the nomenclature and function data 
used i n fragment code systems. After the screens are generated 
for a pa r t i cu la r substructure, the screen search i s car r ied out 
to select a l l structures which contain the charac te r i s t ics 
necessary for a pa r t i cu la r substructure, thus minimizing the num
ber of compounds requir ing a detai led search. 

In the se lect ion of a screening system, the determination 
of the set of s t ructura l charac te r i s t ics to act as the screens i s 
a major problem. A proper balance must be established between 
the cost of generating, s to r ing , and searching the screens, and 
insuring that the searches at the screen leve l achieve complete 
r e c a l l . In addi t ion , the s t ructura l charac te r i s t ics selected 
as screens should occur with a d i s t r i b u t i o n as even as poss ib le . 
Because of the uneven d i s t r i b u t i o n of s t ructura l cha rac te r i s t i c s , 
th is represents a s ign i f i cant problem. 

Adamson and others [22] account for disparate frequencies of 
charac te r i s t i cs i n chemical structures by employing screens at 
d i f ferent levels of d e t a i l s . The screens for frequent character
i s t i c s are generated at a substantial l eve l of d e t a i l whereas 
less common charac te r i s t ics are carr ied i n more general terms. 
For th i s approach, the set of screens are chosen on the basis of 
the at t r ibutes and the s ize of the f i l e . The screens thus se
lected are based on bond-centered fragments with three di f ferent 
levels of d e t a i l as i l l u s t r a t e d i n Figure 8. The most commonly 
occurring pairs of atoms in the f i l e are included as screens 
among the simple pa i r s . For a sample f i l e of 30,000 structures 
from the CAS Chemical Registry System, 18 simple pai rs were 
included. The most frequently occurring simple pai rs were 
included as augmented pa i rs screens. For the p a r t i c u l a r f i l e 
studied, the augmented pai rs a l l involved carbon attached to 
carbon (CC), carbon attached to nitrogen (CN), or carbon attached 
to oxygen (CO). The most frequently occurring augmented pai rs 
were included as bonded pa i r screens; again these involved only 
CC, CN, or CO. The to ta l set of screens consisted of (1) the 
number of common s t ructura l features, e . g . , the number of carbon 
atoms, the number of atoms with connect iv i ty equal to 3, or the 
number of double-chain bonds; (2) b i t s to indicate the presence 
or absence of various atoms; (3) b i t s to indicate the presence 
or absence of the 18 most common simple pai rs of atoms; (4) b i t s 
to indicate the presence or absence of the augmented p a i r s ; (5) 
b i t s to indicate the presence or absence of bonded p a i r s , and 
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(6) b i t s to indicate the presence or absence of various r ing 
systems. A descr ipt ion of the algorithm that generates these 
screens i s provided in a la ter sect ion. 

To achieve an even d i s t r i b u t i o n of screens and a wider 
va r i a t ion i n fragment se lec t ion , Feldman and Hodes [23] have 
developed a screen generation procedure for use i n the chemical 
structure search system at the Walter Reed Army Inst i tute of 
Research. The screens selected are based on frequency s t a t i s t i c s 
from a sample of the t o t a l base. The process involves "growing" 
fragments for each structure from a subset of the i r f i l e by 
s ta r t ing with each atom and then adding s ingle atoms at each 
i t e r a t i o n to the fragments generated during the previous i t e r a 
t i o n . This process would generate a l l possible fragments. To 
keep the number of fragments at a reasonable number, an e l imina
t ion ru le based on the frequency of occurrence of that fragment 
within the sample f i l e i s appl ied. This ru le determines which 
fragments are to be eliminated (those which occur at a frequency 
of less than 0.1%), and which fragments are to be passed on to 
the next i t e ra t ion (those which occur at a frequency of greater 
than 1%), where they w i l l "grow" further. In addi t ion , a 
heur i s t i c procedure based on ea r l i e r operational experience was 
used to "prune" a large number of fragments which were chemically 
i n s i g n i f i c a n t . The fragments obtained at the completion of t h i s 
i t e ra t i ve process were then used as screens. 

Interconversion. With the var ie ty of representations, the 
approach taken i n se lect ion of a chemical substance representa
t i o n has not been to se lect one representation to handle a f u l l 
range of functions, but rather, through automatic interconver
s ion, to u t i l i z e the representation which best solves a p a r t i 
cular problem or meets a pa r t i cu la r set of processing require
ments for a given information system. In addi t ion to providing 
th is in terna l f l e x i b i l i t y , automatic interconversion permits 
interchange of information among systems using various structure 
representations. Granito [24] discusses the needs and status of 
interconversions among chemical substance information systems. 
Campey, Hyde, and Jackson [25] i l l u s t r a t e a chemical structure 
information system which uses a var ie ty of representations. 

Substantial at tention and progress has been made i n the 
development of procedures to effect conversion between chemical 
substance representations. Zamora and Davis [26] describe an 
algorithm to convert a coordinate representation of a chemical 
substance (derived from input by a chemical typewriter) to a 
connection tab le . An approach for in teract ive input of a 
structure diagram and conversion of th i s representation to a 
connection table sui table for substructure searching i s discussed 
by Feldmann [27]. The conversion of systematic nomenclature to 
connection tables offers a powerful ed i t ing tool as well as a 
potent ia l mechanism for conversion of name f i l e s to connection 
tables ; th is type of conversion i s described by Vander Stouw [28]. 
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Programs now exist to convert Wiswesser Line Notation [29], Hay-
ward [30], and IUPAC [18] l inear notations to connection tables . 
Because fragment codes alone do not provide the complete descr ip
t ion of a l l s t ructura l d e t a i l , conversion to other representations 
i s t y p i c a l l y not poss ib le . 

The conversion from a connection table to other unambiguous 
representations i s substant ia l ly more d i f f i c u l t . The connection 
table i s the least structured representation and incorporates no 
concepts of chemical s igni f icance beyond the l i s t of atoms, bonds, 
and connections. A complex set of ru les must be applied i n 
order to derive nomenclature and l inear notation representations. 
To t ranslate from these more structured representations to a 
connection table requires pr imar i ly the interpretat ion of symbols 
and syntax. The opposite conversion, from the connection table 
to l inear notat ion, nomenclature, or coordinate representation 
f i r s t requires the deta i led analysis of the connection table to 
ident i fy appropriate substructural un i t s . The complex ordering 
rules of the nomenclature or notation system or the esthet ic 
rules for graphic display are then applied to derive the desired 
representation. 

Ebe and Zamora [31], bu i ld ing on algorithms that generate 
Wiswesser Line Notation for r i n g systems from a connection table 
[32] , have developed procedures to employ these interconversions 
for ed i t ing Wiswesser Line Notations for complex r ing systems. 
F a r r e l l , Chauvenet, and Koniver [33] describe procedures for 
generating Wiswesser Line Notation from connection tables and 
Lefkovitz [9] describes the der ivat ion of Mechanical Chemical 
Code, a concise form of a connection table from the CAS connec
t i o n table . Programs have also been developed to derive a DARC 
code from both connection tables and l inear notat ions. Algorithms 
for generation of systematic nomenclature from a connection table 
are current ly being developed by CAS. 

Because the structure diagram i s a desirable form of output 
from an automated chemical structure information handling system, 
several algorithms have been developed to generate a coordinate 
representation from a connection table [34 and 35]. However, 
most structure display systems were developed for a chemical type
writer or l ine p r in te r , and the physica l charac te r i s t ics of 
these devices r e s t r i c t the complexity of structures to be d i s 
played. An algorithm for a general Cartesian coordinate system, 
which produces structure diagrams of high graphical qua l i ty from 
a connection table representat ion, has been developed and u t i l 
ized at CAS and i s described by Dittmar and Mockus [36]. In a 
la ter sect ion, an example i s provided to i l l u s t r a t e features of 
th i s a lgori thm. 

Related Continuing Developments 

A var ie ty of algorithms for the computer handling of chemical 
structure information have been described. The techniques for 
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representation and processing have become establ ished, and, as 
indicated by the existence of e f fect ive operational systems 
[4, Chapters 8 and 9] and some algorithms presented e a r l i e r , 
p r a c t i c a l solutions exis t for many of the problems i n the hand
l i n g of chemical structures. 

Several of the general graph theory problems are presently 
unsolved. An example i s subgraph isomorphism: given two graphs, 
Gi and G2, i s G\ isomorphic to a subgraph of G2? It i s con
jectured that no algorithm for solv ing i t i n polynomial time 
ex i s t s , i . e . , a l l known algorithms have at least an exponential 
growth rate based on the number of ver t ices for some subset of 
graphs. Another example i s general graph isomorphism: given 
two graphs, Gi and G2, i s Gi isomorphic to G2? This problem i s 
also unsolved and i s a specia l case of the subgraph isomorphism 
problem [37]. For various classes of graphs, as i n the case of 
planar graphs [38], isomorphism algorithms have been found. 
Sanders [39] demonstrates that the algorithmic generation of 
Wiswesser Line Notation i s not polynomial bounded. As i l l u s 
trated e a r l i e r , good heur i s t i c procedures have been established 
to provide solutions to isomorphism problems for the graphs 
corresponding to chemical structures. However, the general 
graph theory problems remain and are receiv ing continued atten
t i o n . 

Algorithms that process s t ructura l data of chemical sub
stances are being developed for many areas. For example, 
structure/property cor re la t ion [40] u t i l i z e s a chemical substance 
data base to provide a cor re la t ion between b i o l o g i c a l propert ies 
and s t ructura l features of chemical substances. Reactants and 
products of chemical reactions can be analyzed to provide 
r e t r i e v a l of information about p a r t i a l structures that 
characterize the react ion [41]. Among the computer programs 
that have been developed for u t i l i z i n g chemical structure in for 
mation are molecular modeling programs [42], aimed at using the 
computer to generate actual three-dimensional descript ions of 
chemical substances, and organic synthesis programs [43], which 
predict by computer the design of possible synthetic routes to 
a given target substance. 

APPENDIX 

Sample Algorithms 

I l l u s t r a t i v e sample algorithms that support system processes 
i n areas of r e g i s t r a t i o n , substructure searching, and automatic 
interconversion are provided below. 

Algorithm I - Registrat ion - Canonical !zat ion of Connection 
Tables. A connection table for a chemical substance with η 
atoms can be numbered i n as many as n ! di f ferent ways. The 
problem of generating a canonical form involves se lec t ing a 

 P
ub

lic
at

io
n 

D
at

e:
 J

un
e 

1,
 1

97
7 

| d
oi

: 1
0.

10
21

/b
k-

19
77

-0
04

6.
ch

00
6

In Algorithms for Chemical Computations; Christoffersen, R.; 
ACS Symposium Series; American Chemical Society: Washington, DC, 1977. 



6 O ' K O R N Computer Handling of Chemical Information 137 

s ingle and invariant numbering of the connection table . An 
approach would be to generate a l l n ! representations, sort them 
a lphabet ica l ly , and then select the one which compares low. 
Except for very small n , t h i s procedure i s obviously not feas ib le . 
The approach presented below i s a va r ia t ion of th i s procedure, 
and l i m i t s the number of representations that must be generated 
by establ ishing a p a r t i a l order of atoms, r e s t r i c t i n g the num
bering permitted, and saving the resu l t s of the path t rac ing . 

Given an a r b i t r a r i l y numbered connection table representa
t ion of a structure with η non-hydrogen atoms, the unique number
ing i s obtained as fol lows: 

1. Assign Stage 1 connect iv i ty values to each atom based 
on the number of attachments to the atoms. 

2. Assign Stage 2 connect iv i ty values to each atom by 
summing the Stage 1 connect iv i ty values for the attached 
atoms. 

3. Given the Stage i connect iv i ty values for each atom, 
assign the Stage i+1 connect iv i ty values by summing 
the Stage i connectivi ty values for the attached atoms. 

4. Calculate the number of d i s t i n c t connectivi ty values 
at the Stage i and Stage i+1. 

5. I f the number of d i s t i n c t connect iv i ty values at the 
Stage i+1 i s greater than Stage i , go to step 3. 

6. Otherwise, the f i n a l connect iv i ty values are the 
Stage i values. 

7. Select the atom with the highest connect iv i ty value 
and designate that atom as Number 1. 

8. Since Steps 1-6 provide only a p a r t i a l order o f the 
atoms, note a l l other atoms with same connect iv i ty 
value. 

9. Atoms connected to Atom 1 are assigned 2, 3, e tc . based 
on decreasing connect iv i ty va lues. I f a choice i s 
a rb i t ra ry (where the atoms have the same connect iv i ty 
value) note the pairs of atoms involved i n the 
a rb i t ra ry choice. 

10. The unnumbered atoms attached to Atom 2 are numbered 
based on decreasing connect iv i ty values. Again, note 
pai rs of atoms where the choice was a rb i t ra ry . 
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11. This procedure i s followed u n t i l a l l atoms have been 
numbered. 

12. Bui ld and re ta in the compact connection table based on 
th i s numbering. 

13. Back up to the highest numbered atom for which the 
choice was a rb i t ra ry . I f there are no remaining atoms 
where the choice was a rb i t ra ry , the process i s complete 
and the retained connection table i s the unique repre
sentation. 

14. Select the other atom from the pa i r involved i n the 
arb i t rary choice and renumber the atoms of the structure 
from that atom to the last atom. 

15. Bui ld a new compact connection table . 

16. Compare the newly generated compact connection table 
to the retained compact connection table. 

17. I f the new connection table i s a lphabet ica l ly less 
than the retained table , replace the retained table 
with the new table , and go to Step 13. 

18. Otherwise, go to Step 13. 

Figure 9 i l l u s t r a t e s the steps i n the algorithm for gener
at ing the unique connection table . Figure 9a i l l u s t r a t e s the 
Stage 1 connect iv i ty values which are the number of attachments, 
and Figure 9b i l l u s t r a t e s the Stage 2 connect iv i ty values which 
are obtained by summing the Stage 1 connectivi ty values for the 
attached atoms. At Stage 2, the number of d i s t i n c t values i s 4. 
The Stage 3 connectivi ty values are obtained by summing the Stage 
2 connect iv i ty values for the attached atoms, as i l l u s t r a t e d i n 
Figure 9c. Since in Stage 3 the number of d i s t i n c t values i s 6, 
which i s greater than the Stage 2 value of 4, the i t e ra t i ve pro
cess i s continued. Figure 9d i l l u s t r a t e s the Stage 4 connecti
v i t y value ca lcu la t ions . Since the number of d i s t i n c t values at 
Stage 4 i s equal to that at Stage 3, the f i n a l connect iv i ty 
values assigned are those calculated at Stage 3. 

Figure 9e i l l u s t r a t e s the i n i t i a l numbering and the compact 
connection table using the Stage 3 connectivi ty values. The atom 
with connect iv i ty value of 13 i s assigned Number 1. The atoms 
attached to Atom 1 are numbered 2, 3, and 4 based on decreasing 
connect iv i ty values. The arb i t rary choice between 3 and 4 i s 
noted. 

The unnumbered attachment to Number 2 i s assigned Number 5. 
The unnumbered attachments to Atoms 3, 4, 5 are numbered. Based 
on th i s numbering, the i n i t i a l connection table i s constructed 
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2 I 
I 2 2 J / C ~ " ° 

o=c-c-c 
c—c 

a. ) Stage 1 Connectivity Values = |l,2,3J. 
No. of Distinct Values = 3. 

2 + 2 + 2-^ 4 2 

2 3 5 6/^~~® 
0 = C — C - C 4 2 

^ C — 0 

b. ) Stage 2 Connectivity Values = J2,3,4,5,6}. 
No. of Distinct Values = 5. 

4+4+5 N 

\ 8 4 
5 7 9 /J^C —0 
o=c-c-c ' 

\ 8 4 
C - C 

c.) Stage 3 Connectivity Values = j 3,4,7,8,9,13[ 
No. of Distinct Values = 6. 

8+ 8+ 9 ν f 17 β 
7 12 20^25 0 o=c-c-c^ l 7 β 

C - C 

d. ) Stage 4 Connectivity Values = {7,8,12,17,20,25}. 
No. of Distinct Values = 6. 

3 6 
8 5 2 I y C — 0 

0 = C " C - < , 7 
c-c 

Atom No. 1 2 3 4 5 6 7 8 
Attachments 1 1 1 2 3 4 5 
Elements C C C C C O C O 
Bonds S S S S S S D 

e. ) Initially Numbered Connection Table. 
Arbitrary Choice Between 3 and 4. 

4 7 
8 5 2 1yC—O 

o=c-c -c ' 6 

c-c 
Atom No. 1 2 3 4 5 6 7 8 
Attachments 1 1 1 2 3 4 5 
Elements C C C C C C O O 
Bonds S S S S S S D 

f. ) Alternately Numbered Connection Table. 

Figure 9. Generation of a unique, unambiguous 
connection table 
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and retained, as shown i n Figure 9e. 
Backing up to the highest atom marked as an arb i t rary 

choice, Atom 3, the other a l te rnat ive , i s t r i e d and the repre
sentation i s renumbered from Atom 3. Figure 9f i l l u s t r a t e s the 
numbering and compact connection table r esu l t ing from th is a l t e r 
nat ive. The connection table generated i s a lphabet ica l ly com
pared to the retained connection table . The attachment l i s t s 
of the retained and newly generated connected table are compared 
and they are equal. The atom l i s t of the newly generated connec
t i o n table i s compared and i s lower than the retained connection 
table , because C i n Posi t ion 6 of the newly generated table i s 
lower than 0 i n the retained connection table . Therefore, the 
newly generated connection table i s reta ined. 

Since there are no other atoms noted as involv ing an 
arb i t ra ry choice, the retained table i s the single invariant 
representation which i s selected as the representation for th i s 
substance. 

The number of alternate numberings which must be attempted 
i s dependent on the numbers of atoms which have attachments with 
equal connect iv i ty values. A l l of these various alternate 
numbering combinations must be attempted. Consequently, the 
algorithm does not provide a p r a c t i c a l so lut ion to the general 
graph isomorphism problem. However, because the graphs corre
sponding to chemical structures t y p i c a l l y have connect iv i t ies of 
1, 2, 3, or 4, the algorithm does provide a p r a c t i c a l way to 
uniquely label v i r t u a l l y a l l graphs corresponding to a chemical 
s t ructure. 

This algorithm i s implemented on an IBM 370/168. As part of 
routine production at CAS, 13,000 substances per week are 
uniquely numbered through th i s algorithm at an average processing 
rate of 1000 structures per minute of CPU time. Since there are 
some highly symmetrical structures which would require a sub
s t a n t i a l number of i t e ra t ions , the algorithm i s implemented to 
stop after three CPU seconds and use a r eg i s t r a t ion approach 
based on a non-unique representation. For the 677,000 sub
stances processed i n 1975, 990 substances could not be uniquely 
labeled within the three seconds. Ferrocene, shown i n Figure 10, 
i s an example of a structure which would require 10! or 3,628,800 
i t e ra t ions . For substances of th is type which cannot be 
uniquely labeled within the three CPU second time l i m i t , an 
isomer-sort r eg i s t r a t ion technique i s u t i l i z e d to complete the 
reg i s t ra t ion processes without human intervent ion. 

Figure 10. Ferrocene 
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Algorithm II - Substructure Search - Screen Generation. In 
an e a r l i e r sect ion, bond-centered screens for substructure search 
are described. Below is an algorithm for generating these 
screens. Given the connection table representation of a chemical 
substance, the algorithm for the generation of the bond-centered 
screens consists of the fol lowing steps: 

1. Construct the set of counts of atoms, bonds, and 
connections and set the appropriate atom and r ing 
system b i t s . 

2. Select the f irst/next pa i r of atoms. 

3. I f the pa i r i s CC, CN, or CO, determine i f i t i s one of 
the bonded p a i r s . I f not, go to Step 8. 

4. I f i t i s one of the bonded p a i r s , go to Step 10. 

5. I f i t i s not one of the bonded p a i r s , determine i f 
i t i s one of the augmented atom p a i r s . 

6. I f i t i s one of the augmented atom p a i r s , go to Step 11. 

7. I f i t i s not one of the augmented atom p a i r s , go to 
Step 12. 

8. I f i t i s one of the simple pa i r s , go to Step 12. 

9. I f i t i s not one of the simple p a i r s , set exception 
pa i r b i t s and go to Step 13. 

10. Set appropriate bonded pa i r b i t s . 

11. Set appropriate augmented pa i r b i t s . 

12. Set appropriate simple pa i r b i t s . 

13. I f th is i s not the las t p a i r , go to Step 2. 

14. I f th is i s the las t p a i r , the process i s complete. 

Algorithm III - Interconversion - Connection Table to 
Structure Diagram. This algorithm has as input the connection 
table representation of a chemical substance and an authority 
f i l e containing a coordinate representation of a l l unique r ing 
system shapes for a l l r ing systems; an example of input for one 
chemical substance i s shown i n Figure 11a. The manually b u i l t 
f i l e of coordinate representations for the r ing system shapes 
eliminates many of the problems associated with assigning 
coordinates to r i n g systems. This f i l e at CAS contains 15,000 
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r ing system shapes which represent the r ing shapes for v i r t u a l l y 
a l l r ing systems occurring with 3.5 X 10^ d i s t i n c t substances 
i n the CAS Chemical Registry System. The examples below i l l u 
strate features of th i s algorithm. 

The algorithm par t i t ions the connection table into three 
groups: r ing systems, the largest connected substructural units 
i n which a l l edges are in a cyc le ; chains, l inear a c y c l i c str ings 
with one terminal atom; and l i n k s , l inear acyc l i c s t r ings with
out any terminal atoms. The algorithm substitutes commonly 
recognized shortcut symbols for various groups of atoms, e . g . , 
Me for the methyl group and Ph for the benzene r i n g . Figure l i b 
i l l u s t r a t e s these processes. 

The most central r i n g system i s i d e n t i f i e d , i t s pre-stored 
r ing shape i s re t r ieved, and the nodes and the bonds of the r ing 
system are mapped into the r ing shape. The atom characters and 
bond vectors are calculated based on the coordinates of the r ing 
shape, shown i n Figure 11c. I f there are no r ing systems, the 
most central acyc l i c atom is used as the s tar t ing point . 

With the most central r i n g system as the base structure, 
the d i r e c t i o n , bond angle, and bond length are determined, f i r s t 
for the attached l inks and then for the chains attached to the 
r ing systems. For l i n k s , the d i r ec t ion i s away from the base 
structure, and i s hor izonta l or v e r t i c a l based on the angle 
nearest to the b isec t ing angle of the r ing perimeter. For 
chains, the d i r ec t ion i s away from the base structure and bisects 
the r i n g perimeter angle. A standard length bond i s used. F i g 
ure l i d i l l u s t r a t e s these processes. 

For l inks and chains attached to the base structure, the 
coordinates of the atoms and bonds of the component are deter
mined. The coordinates of the f i r s t atom attached to the r ing 
system are determined. Coordinates for the next atom are above, 
below, to the r i g h t , or to the l e f t , and they are determined 
based on the drawing d i r e c t i o n . Horizontal s ingle bonds are 
drawn i m p l i c i t l y ; a l l other bonds are drawn e x p l i c i t l y . A l l 
atoms i n the l ink or chain are placed s i m i l a r i l y . When the 
coordinates of a l l l inks and chains are determined, the l ink 

a) Connection Table for Substance and Coordinate 
Representation for Ring Shapes. 

Figure 11. Generation of a coordinate represen
tation from a connection table (continued on fac

ing page) 
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I X J U f e ^ N ^ 
Ring System 1 ^ " " H 

Ring System 2 
b) Partitioning of Atoms into Ring Systems, Links, and 

Chains, and Substitution of Shortcut Symbols. 

Chains 1 I Η 
Links ( ) 

c) Identification and Placement of Most Central Ring 
System. 

d) Determination of Bond Direction, Angle, and Length 
for Chains and Links. 

Η 
M e O \ ^IW ^ M e 

' C H 2CH2 
MeO" 

e) Placement of Links and Chains. 

f) Identification and Placement of Second Ring System. 

Ο 
g) Placement of Chains 

M e ° W V M e 

Ĵ s. J! ^ C H p C H o - N ^ ^ N 

M e O ^ ^ ^ I I 
h) Results of Display Procedure. ^Ph 

Figure 11. Generation of a coordinate representa
tion from a connection table (continued from facing 

page) 
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or chain i s posit ioned r e l a t i ve to the r ing system, as i l l u s 
trated i n Figure l i e . A l l other l inks and the chains attached 
to the most central r ing system are posit ioned in a s imi la r 
manner. 

When a l l l inks and chains attached to the most central 
r i n g system are placed, the next r ing system and i t s r ing shape 
are re t r ieved. (Note that i n th is example there are no l inks 
or chains attached to the attached l inks and chains.) The atoms 
and bonds are mapped into the r ing shape, and the atom characters 
and bond vectors are ca lculated from the coordinates of the r ing 
system, as i l l u s t r a t e d by Figure l l f . The or ientat ion of each 
r ing system after the f i r s t must re f l ec t how i t i s attached to 
the base structure. In order to allow for attaching i t to the 
base structure, i t may be necessary to re f l ec t the r ing system 
about the x-axis , the y -ax i s , or both. 

I f a second r i n g system with attachments i s present, the 
d i r e c t i o n , bond angle, and bond length for chains and l inks 
attached to the second r ing system are then determined, as 
shown i n Figure l l g . Following t h i s , the coordinates of l inks 
and chains attached to the second r ing system are attached. I f 
attachments are present on the l inks and chains attached to the 

H 

Figure 12. Example of photocomposer 
output 

H 

Figure 13. Example of electrostatic printer output 
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second ring system, they would be positioned at this point. The 
second ring system with its attachments is then attached to the 
base structure. Since all components of the substance have been 
processed, the display is complete; that is, a coordinate repre
sentation has been derived. The results of this process are 
illustrated in Figure l lh. 

Throughout this process, as each component is added to the 
base structure, it is tested for overlap. If overlap is de
tected, it is resolved by extending the bond length and/or ad
justing the bond angle. Since this algorithm uses the coordinate 
representation described earlier, movement of each component to 
be added requires updating the coordinates of the node associated 
with that component rather than the coordinates of each atom 
involved. 

This algorithm produces highly acceptable results. With 
initial implementation, considerations for handling special 
cases of substances, e.g., coordination compounds, polymers, and 
incompletely defined structures, were deferred. The algorithm 
will generate images for many of these structures but acceptabil
ity is dependent on use. It is estimated that the current 
version of the algorithm will generate a highly acceptable (by 
CAS internal drawing standards) coordinate representation for 85% 
of the 3.5 Χ 1θ6 unique substance in the CAS Chemical Registry 
System. The algorithm requires 266K bytes of main storage for 
executable instructions and processes 8 substances per CPU second 
on an IBM 370/168. 

Within the CAS Composition Facility, the device-independent 
coordinate representation generated by this algorithm can be 
converted to the device-specific coordinates of the Autologic 
APS-4 photocomposer for high graphical quality output - - illus
trated by Figure 12 - - or to the Varian Status 21 electrostatic 
printer for low cost worksheet production - - illustrated by 
Figure 13. 
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I N D E X 

A 
Adiabatic mapping 87 
Adjacency structure 5 
Algorithms, sample 136 
Ancestors 12 
Angle, Bragg 107 
Anharmonic tunneling 83 
Approximation ( s ) 

harmonic 63, 82 
relation of exact TST to 80 

stochastic 63 
Automating crystallographic 

calculations 116 

Β 
Benzene 23 
Boltzmann exponential 79 
Bond 15 
Born approximation, distorted wave .. 54 
Born-Oppenheimer 22 
Bottleneck s ) 68,84 

critical 84 
equilibrium in 69,76 
finding 87 
rate-limiting 84 
simulation of infrequent events 95 

Bragg angle 107 
Bystander 82 

C 
Calculations 

automating crystallographic 116 
molecular mechanics "strain 

energy 115 
probability factor 78 
quasiclassical trajectory 84 

Canonical equilibrium probability 
density 83 

Canonical form 12 
Canonicalization of connection tables 136 
Chebyshey series 32 
Children 12 
Classical equilibrium probability 

density (Peq) 83 
Classical path 56 
Close coupling 53 
Code 13 
Codes, fragment 125 
Coefficient, conversion 74 

Coefficient, transmission 74 
Colimator 101 
Complexity 7 
Computer handling of chemical 

information 122 
Configuration interaction 36 
Connection table(s) 127 

canonicalization of 136 
to structure diagram 141 

Connectivity, decomposition by 13 
Continental divide 77 
Conversion coefficient 74 
Coordinate representation 127 
Coordinate system 98 
Counting the trajectories 72 
CRYM 117 
Crystal deterioration, treatment of .... 105 
Crystallographic calculations, 

automating 116 
Crystallography, x-ray 98 
Curves, Gaussian 103 
Cycle 11,15 

D 

DARC 127 
De Broglie wavelengths 83 
Decomposition algorithm 15 
Decomposition method 11 
Density, canonical equilibrium 

probability 83 
Density, classical equilibrium 

probability 83 
Descendants 12 
Deterioration, crystal treatment of ... 105 
Diffractometers, x-ray 99 
DIREC 112 
Distribution in the bottleneck, 

equilibrium 76 
Dynamics, molecular 67 

Ε 
Eigenvalue algorithms 46 
Eigenvalue equations 36 
Energy, free Helmholtz 80 
Equilibrium 

in the bottleneck 69 
distribution in the bottleneck 76 
probability density, canonical 83 
probability density, classical 83 

Euler—Lagrange equations 35 
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150 A L G O R I T H M S F O R C H E M I C A L C O M P U T A T I O N S 

F 

Factor 
normalizing 91 
probability 74 
trajectory-corrected frequency 74 

Fast fourier transform, use of 110 
FFT 110 
Fourier transform, use of fast 110 
Fragment codes 125 
Free energy, Helmholtz 80 
Functions, cartesian gaussian 32 

G 
Gaussian curves 103 
Gaussian functions, cartesian 32 
Generation, screen 141 
Geometry, goniometer 101 
Goniometer geometry 101 
Graph(s) 

algorithms 1 
planar 11,16 
theory 2 
triconnected 15 

H 
Hamiltonian 80 
Harmonic approximation 63, 82 

relation of exact TST to 80 
Harmonic hyperplane 82 
Hartree-Fock equations 21 
Hartree-Fock function 34 
Heating 90 
Height 12 
Helmholtz free energy 80 
Hidden line algorithms 107 
Hidden surface problem 107 
Hydrological construction 86 
Hyperplane, harmonic 82 
Hyperplanes, unstable-mode 94 

I 
Incident 3 
Information, chemical substance 123 
Integral calculation 28 
Interconversion 134,141 
Isomorphic 3 
Isomorphism 8 

algorithm 18 
subgraph 3,8 

J 
Jahn-Teller-Renner 23 

L 
Leaves 12 
Linear notation 125 

M 
MAGIC 112 
Mapping, adiabatic 87 
Matrix, adjacency 5 
Matrix manipulations 39 
MC method 64 
MC-SCF 26 
MD program 64 
Mechanics, classical 55 
Microcanonical ensemble 79 
Molecular 

chaos 63 
dynamics 63, 67 
mechanics "strain energy" 

calculations 115 
scattering calculations, selection 

of algorithms for 52 
Molecules, representation of 2 
Monte Carlo method 64 
Monte Carlo transition algorithms .... 93 
Multiconfiguration SCF 26 

Ν 
Nesbet-Shavitt method 48 
Newton-Raphson solution 35 
Nomenclature, systematic 124 
Normalizing factor 91 
Notation, linear 125 
NP-complete problems 11 

Ο 
ORTEP program 108 
Orthonormal orbitals 36 

Ρ 
Parent 12 
Participant 82 
Peq density 83 
Perturbation 22 
Probability 

density, canonical equilibrium 83 
density, classical equilibrium 83 
factor 74,78 

Program size 7 
Pushing 90 

Q 
Quadratic minimum 80 
Quadratic saddle point 79 
Quantum 

chemistry 21 
corrections 82 
-mechanical scattering theory, 

nonrelativistic 52 
Quasiclassical trajectory calculations .. 84 
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R 

Random walk 63 
Rate-limiting bottlenecks 84 
Registration 128,136 
Root 12 
Roothaan SCF equation 26 
Running time 7 

S 

Saddle point, quadratic 79 
Sample algorithms 136 
Scattering, quantum 53 
Scattering theory 52 

algorithm for choosing appropriate 57 
criteria for choosing appropriate .... 53 

SCF 26 
Schrodinger equation 21 
Screen generation 141 
Search, substructure 141 
Searching, substructure 129 
Self-consistent field 34 
Self-consistent-field equation 26 
Semiclassical methods 55 
Set reduction technique, Sussenguth .. 131 
Simple path 11 
Simulation of infrequent events, 

bottleneck 95 
Slater determinant ( s ) 26,38 
Slater orbitals 28 
Spin-eigenfunction 38 
Spontaneous transitions 79 
Stochastic approximations 63 
Storage 7,39 
Strain energy calculations, 

molecular mechanics 115 
Structure diagram, connection 

table to 141 
Substructure search 141 
Substructure searching 129 
Subtree 12 

Successful transition, definition of 75 
Sussenguth set reduction technique .. 131 
Symmetry 98 
Systematic nomenclature 124 

Τ 
Theory, transition state 63, 67 
Thermalization 87 
Thomas-Fermi density model 21 
Trajectory ( -ies ) 70 

calculations, quasiclassical 84 
conditions 71 
-corrected frequency factor 74 
counting the 72 

Transformations 40 
Transition(s) 

algorithms, Monte Carlo 93 
definition of successful 75 
spontaneous 79 
state theory 63, 67 

Transmission coefficient 74 
Tree, decomposition 15 
Trees, codes for 11 
TST 67 

relation to harmonic approximation 80 
Tunneling 83 

U 
Unstable-mode hyperplanes 94 

W 

Watershed 77 
Wavelengths, de Broglie 83 
WBK approximation 57 

X 
X-ray crystallography 98 
X-ray diffractometers 99 
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